

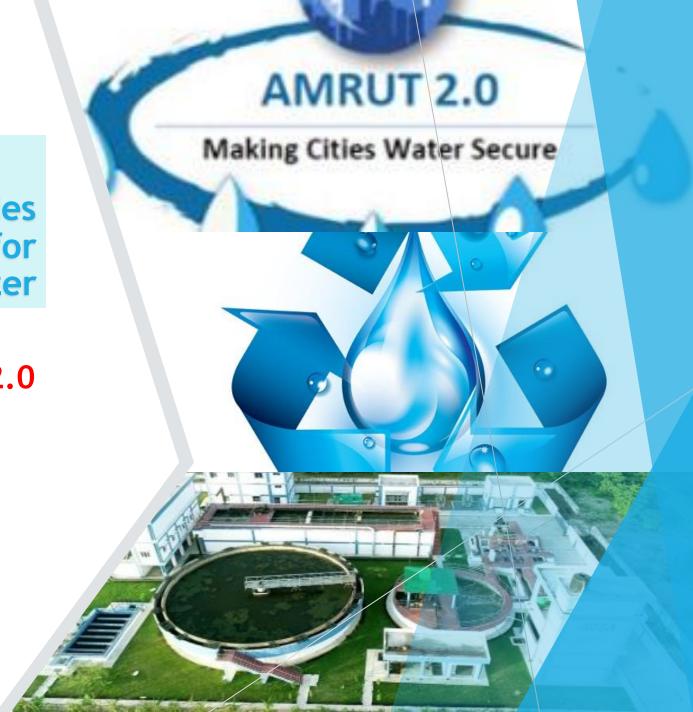
MCGM CENTRE FOR MUNICIPAL CAPACITY BUILDING AND RESEARCH®

(An Initiative by Brihanmumbai Municipal Corporation) State Level Training Institute for Urban Local Bodies In association with

CENTRE FOR WATER AND SANITATION, CEPT UNIVERSITY Organizes Training on

Organizes fraining on

Fit for Purpose Technologies for Recycle & Reuse of Wastewater


Course Code : ENV3RE11

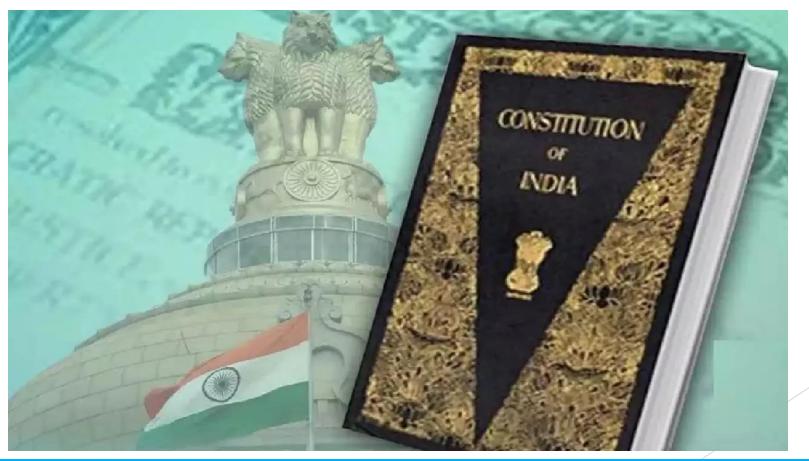
11, 12 & 13 Jan 2023 (3 Days Residential Program) MCMCR POWAI CAMPUS, MUMBAI 400 072

Program Module:

Day – 1 (Classroom Sessions)	Day – 2 (Technical Exhibitions)	Day – 3 (Field Visit)
Reuse & Recycle of Wastewater under AMRUT 2.0 & SBM-U 2.0	Presentations by Exhibitors	Banganga STP, Mumbai
Standards for Recycle & Reuse of Wastewater	Technical Exhibition	Colaba STP, Mumbai
Wastewater Technology Selection Parameters for Recycle & Reuse of Wastewater		Certificate Distribution
Nature Based or Mechanised Wastewater Treatment Technologies Selection for 'Fit for Purpose' application		
Business Model for Recycle & Reuse of Wastewater		

11, 12 & 13 Jan 2023 (3 Days Residential Program) MCMCR POWAI CAMPUS, MUMBAI 400 072

AMRUT 2.0 & SBM-U 2.0



Indian Constitution - 243W

243W. Powers, authority and responsibilities of Municipalities, etc.-

Subject to the provisions of this Constitution, the Legislature of a State may, by law, endow-

(a) the Municipalities with such powers and authority as may be necessary to enable them to function as institutions of self-government and such law may contain provisions for the devolution of powers and responsibilities upon Municipalities, subject to such conditions as may be specified therein, with respect to-(i) the preparation of plans for economic development and social justice;(ii) the performance of functions and the implementation of schemes as may be entrusted to them including those in relation to the matters listed in the Twelfth Schedule;

(b) the Committees with such powers and authority as may be necessary to enable them to carry out the responsibilities conferred upon them including those in relation to the matters listed in the Twelfth Schedule.

"TWELFTH SCHEDULE (Article 243W)

- 1. Urban planning including town planning.
- 2. Regulation of land-use and construction of buildings.
- 3. Planning for economic and social development. 4. Roads and bridges.
- 5. Water supply for domestic, industrial and commercial purposes.

6. Public health, sanitation conservancy and solid waste management.

- 7. Fire services.
- 8. Urban forestry, protection of the environment and promotion of ecological aspects.
- 9. Safeguarding the interests of weaker sections of society, including the handicapped and mentally retarded.
- 10. Slum improvement and upgradation.11. Urban poverty alleviation.
- 12. Provision of urban amenities and facilities such as parks, gardens, playgrounds.
- 13. Promotion of cultural, educational and aesthetic aspects.
- 14. Burials and burial grounds; cremations, cremation grounds and electric crematoriums.
- 15. Cattle pounds; prevention of cruelty to animals.
- 16. Vital statistics including registration of births and deaths.
- 17. Public amenities including street lighting, parking lots, bus stops and public conveniences.
- 18. Regulation of slaughter houses and tanneries."

23-01-2023

SDG 2030

CLEAN WATER AND SANITATION

Ensure availability and sustainable management of water and sanitation for all

SDG 2030

Venue: MCMCR, Powai, Mumbai

23-01-2023

8

6.4 By 2030, substantially increase water-use efficiency across all sectors and ensure sustainable withdrawals and supply of freshwater to address water scarcity and substantially reduce the number of people suffering from water scarcity

SDG 2030

NUSP 2008

National Urban Sanitation Policy Ministry of Urban Development Government of India

NUSP 2008

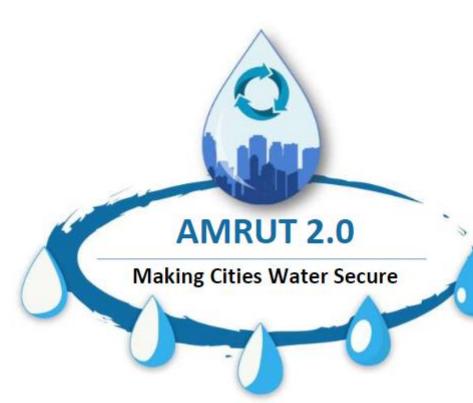
Sanitary and Safe Disposal

100 % of human excreta and liquid wastes from all sanitation facilities including toilets must be disposed of safely. In order to achieve this goal, the following activities shall be undertaken:

- a. Promoting proper functioning of network-based sewerage systems and ensuring connections of households to them wherever possible;
- b. Promoting recycle and reuse of treated waste water for non potable applicationswherever possible will be encouraged.
- c. Promoting proper disposal and treatment of sludge from on-site installations (septictanks, pit latrines, etc.);
- d. Ensuring that all the human wastes are collected safely confined and disposed of after treatment so as not to cause any hazard to public health or the environment.

SERVICE LEVEL BENCHMARKS

Sewage Management (Sewerage and Sanitation)	
Proposed Indicator	Benchmark
Coverage of toilets	100%
Coverage of sewage network services	100%
Collection efficiency of the sewage network	100%
Adequacy of sewage treatment capacity	100%
Quality of sewage treatment	100%
Extent of reuse and recycling of sewage	20%
Efficiency in redressal of customer complaints	80%
Extent of cost recovery in sewage management	100%
Efficiency in collection of sewage charges	90%


SLB

Atal Mission for Rejuvenation and Urban Transformation 2.0

AMRUT 2.0

AMRUT 2

The AMRUT 2.0 guidelines have been formulated with the aim of assisting States/ UTs for making our cities Aatma Nirbhar and 'water secure'. Several stakeholder consultations across 36 States/ UTs have been conducted as well as inputs from the key players such as development banks, private sector players, water sector consultants as well as NGOs have been taken into consideration.

MoHUA in partnership with States aims to achieve functional tap connections to all households, undertaking water source conservation/ augmentation, rejuvenation of water bodies and wells, recycle/re-use of treated used water and rainwater harvesting, Mission will extend the ease of living by upscaling universal coverage in water supply from 500 cities to about 4,800 statutory towns and universal coverage of sewerage and septage management to 500 AMRUT cities,

Mission has a reform agenda with focus on strengthening of urban local bodies and water security of the cities. Major reforms are reducing non-revenue water to below 20 %; create a 'new tap of water' through recycle of treated used water to meet at least 20% of total city water demand and 40% for industrial water demand at State level; 24x7 water supply; raising funds through issuance of municipal bonds and rejuvenation of water bodies.

Mission has a reform agenda focused towards financial sustainability and water security of ULBs. Meeting 20% of water demand through recycled water, reducing non-revenue water to less than 20% and rejuvenation of water bodies are major water related reforms. Reforms on property tax, user charges, and enhancing credit worthiness of ULBs and urban planning are other important reforms.

Capacity building programs will be conducted for all stakeholders including contractors, plumbers, plant operators, students, women and citizens. Technical institutions will be roped in for assessment of Mission outcomes.

18

Admissible elements of Projects

- Sewerage network
- Interception and Diversion (I&D) infrastructure
- Sewage Treatment Plants (STPs)
- Tertiary Treatment with end-to-end reuse plan (preferably in PPPmode)
- Faecal sludge and Septage management (FSTP cum STP Plant & collection mechanism)
- Provision/ augmentation and rehabilitation of sewerage systems with end-to-end treatment and reuse
- Tapping of used water for recycling
- Identifying the bulk users of recycled used water and facilitating sale of used water to potential users (e.g. industrial clusters such as textile/leather/paper/power plants/railways, etc.)
- Smart solutions like SCADA Last mile connectivity to households (Not exceeding ₹3000 per HH)

Implementation of projects

Projects as per approved SWAP will be planned, tendered, awarded and implemented by ULBs. Where ULBs do not have adequate capacity, specialized parastatal agencies will implement the projects. In order to ensure efficient implementation of projects, the States/UTs, ULBs should follow an approach wherein end-to-end support for project design, development, implementation and management is provided to ULBs/States/UTs by external entities (PDMCs). Maintenance and upkeep of the assets created will be responsibility of the State/UT/ULB. Smart elements will be part of the projects.

Projects being proposed in State Water Action Plan (SWAP) will have O&M for at least five years to be funded by way of levy of user charges or other revenue streams. Project cost will exclude O&M. ULBs shall fund O&M through an appropriate cost recovery mechanism in order to make them self-reliant and cost effective.

Recycle of treated used water to meet at least 20% of total city water demand and 40% of industrial water demand at State level

Issue of Policy Guidelines by State for Recycling and Reuse of treated used water and its resolution by ULBs will be a State level reform. Mechanism of institutionalisation to check the quality, treatment capacity of STP, treated used water recycled, percentage of recycled water used by city, industrial, agriculture and other demand, whether the treated used water is released in water bodies will also be assessed.

Pey Jal Survekshan will foster healthy competition among ULBs, wherein following parameters will be assessed:

- i. Water supply management & innovative practices,
- li. Compliance of water supply service level benchmarks w.r.t. coverage, quality, quantity, and user charges reforms,
- lii. Reduction in Non-Revenue Water (NRW) through District Metered Areas (DMAs) and training to check leakages,
- Iv. Operational efficiency of sewage and water treatment plants,
- v. Rejuvenation of water bodies and wells,
- Vi. Evaluation of collection, treatment, and reuse of treated used water.

Synergies for effective outcomes

Rural-Urban Synergy Water markets for reuse of treated used water shall be ascertained in rural urban continuum. Co-treatment of sewage/ septage from nearby villagesin spare capacities of STPswill be explored by ULBs.

Urban-Urban synergy

Water supply projects may be techno-economically sustainable, if planned for a cluster of ULBs which are adjacent to each other. For example, a common intake line may be laid from a far-away water source for a group of ULBs

Synergy among Missions

Swachh Bharat Mission (SBM), Smart City Mission(SCM) and National Urban Livelihood Mission (NULM) have components common with AMRUT 2.0. Sanitation and FSSM are components of SBM and water supply with smart elements is a component of SCM.

Swachh Bharat Mission - Urban 2.0

SBM-U 2.0

SBM-U 2.0 is needed, with the following areas of focus:

• to achieve the vision of a "Garbage Free" Urban India, more focus is required to be given to issues such as source segregation, collection & transportation, and processing, including effective management of Construction & Demolition waste, plastic waste management including reduction in single use plastic, and remediating all legacy dumpsites;

• to sustain the ODF status and prevent slippage, there is a need to ensure that all fecal sludge and waste(used) water are safely contained, transported, processed and disposed off, so that **no untreated fecal sludge or used water pollutes the ground or water bodies;**

• intensified focus is required to be given to IEC and behavior change through citizen outreach and jan andolan, as well as capacity building and skilling of all relevant stakeholders, towards achieving the Mission's objectives.

Mission : Overall Vision, and Specific Objectives

Sustainable Sanitation and treatment of used water

i. holistic Sanitation, with end-to end solutions (from discharge, containment, evacuation, transportation to safe disposal of all effluents from toilets);

ii. treatment of used water before discharge into water bodies, and maximum reuse of treated used water;

iii. eradication of hazardous entry into sewers and septic tanks, and sustaining elimination of manual scavenging, through mechanization of sewer and septic tank cleaning operations;

Used water management Objective:

To ensure that no untreated fecal sludge or used water is discharged into the environment, and all used water (including sewerage and septage, grey water and black water) is safely contained, transported and treated, along with maximum reuse of treated used water, in all cities with less than 1 lakh population.

The following components would be eligible for funding:

i. desludging equipment, for scheduled and need-based desludging of all septic tanks;

ii. interception and diversion of drains (I&D) (including last mile connectivity for nearest sewer network);

iii. construction of Sewage Treatment Plants (STPs)/ STP cum Fecal Sludge Treatment plants (FSTPs) for used water treatment.

Venue: MCMCR, Powai, Mumbai

Urban-Rural convergence

Infrastructure projects will be taken up on cluster basis to cater to groups of neighboring ULBs and rural areas, so that common waste processing facilities are utilized efficiently. SBM-U 2.0

USED WATER MANAGEMENT

Sets out the overall approach to be taken by ULBs to put in place systems and processes to ensure that no untreated waste/used water is discharged into water bodies, along with reuse of treated used water.

In the current scenario in India, only 40% of urban population have access to sewerage system, while the remaining 60% is dependent on unregulated on-site sanitation systems.

In the first phase of SBM (U), there were no funds earmarked for waste water management for towns. Based on learnings from the seven years, **used water management for towns less than 1 lakh population has been newly added as a component under Swachh Bharat Mission-Urban 2.0 and Govt of India's AMRUT 2.0 Mission has funds earmarked for used water treatment including Faecal Sludge management, for cities with more than 1 lakh population.**

Components of Used Water Management Systems

Management of Used Water includes collection, conveyance, treatment & recycling/ disposal of all the above stated flows.

Offsite System consists of sewage conveyance and treatment at STP

System of intercepting & collecting sewage from municipal drains (where sewer network is absent) and to divert it to STP for treatment.

Onsite treatment system (OTS) is a privately owned and maintained sewage disposal system (other than municipal body) that treats used water and produces partially treated water. However, some packaged onsite sewage treatment systems are also available.

Components of Used Water Management Systems

Sewage is treated in STP and faecal sludge can be treated either at STP or STPcum-FSTP or standalone FSTP. Further, the treatment may be centralized or decentralized treatment.

Sewage Treatment Plants (STP) are used for treatment of used water coming out from Domestic, Commercial, institutional establishments etc.

Faecal Septage Treatment Plants (FSTPs) are used for treatment of faecal septage being periodically removed from septic tanks of domestic, commercial, institutional establishments etc. to maintain their efficiency.

Septage can be economically treated at STPs with certain minor modifications saving CAPEX, OPEX & land requirement.

Capacity Building and Skill Development

Administrative Officials of ULBs:

• Focus on developing implementation capacity and change management functionalities by creating targeted capacity building training, e-learning courses and online workshops.

• Comprehensive approach to human resource development with a sensitization towards the social, economic and technological environment for effective implementation and service delivery under the Mission.

PHE and Technical Officials of the ULBs

• Technical officials and staffs will be provided hands on technical training, access to e-learning courses, workshops, field visits and knowledge exchange exposure visits to enhance their capacity to effectively implement objectives of SBM-U 2.0. Courses will be focused on the latest technologies, which are sustainable, environmentally friendly, and context appropriate.

Components of Used Water Management Systems

The treated used water may be used by ULB either for self-consumption, or sold, for the following purposes:

- 1. Non-potable purposes like flushing toilets, gardening etc.
- 2. Agricultural purposes
- 3. Horticulture purposes
- 4. Industrial purposes
- 5. Municipal purposes like dust mitigation, road washing, construction activity, etc.
- 6. Water body rejuvenation

It is targeted to recycle and reuse at least 20% of treated used water for above mentioned purposes.

Provision for adequate Used Water Treatment Facility in each ULB:

It may be noted that each ULB needs to plan for adequate used water (grey water + black water) treatment facility with provision to treat septage as well.

Creating adequate used water treatment facility is an important component and aligned with mission objective to ensure that used water is discharged to water body or over land only after proper treatment ensuring compliance to environmental discharge standards.

This is necessary to comply with Legal and Regulatory requirements under Hon'ble NGT O.A no. 673/2018 and Honb'le Supreme court WP(C) 375.2012. as well as WATER (Prevention and Control of Pollution) Act 1974.

Accordingly, all towns will need to prepare a DPR containing the provision of minimum one STP (for 70% of current population).

STP Technology:

As regards **selection of Used water treatment technology**, it will be open to ULB/State Government to **select any proven technology as brought out in the CPHEEO** Manual/Advisories from time to time. In case States come across any other technology not listed in CPHEEO Manual/Advisories, the same should be referred to CPHEEO for evaluation and inclusion in the Advisories. **State Governments are encouraged to select nature-based sewage treatment technologies (alone or in combination of two to attend desired treated effluent quality), where feasible, to economise Capex & Opex**.

In this context, it may be mentioned that global experiences have established STPs to be the most effective method for treating used water (grey water and black water). Hence, States/ UTs may take informed decisions regarding technology to be used for treating their used water so that the Mission's objective of "no untreated used water polluting water bodies" is realized.

SUMMARY

No untreated used water including faecal sludge is discharged into the water bodies or open environment. However, there exist several challenges like lack of financial resources, institutional capacity and technical know-how to plan, design, construct and operate these treatment facilities.

To overcome the technical challenges, for selection of different Used Water Treatment options, that are suiting to ULBs in Indian climatic conditions.

This training is organized considering above said challenges and suggests more sewage treatment options.

Thank You

Prakash Shirsat Deputy Director (MCMCR) Email: dydirector.mcmcr@mcgm.gov.in Mob: 9823223007

38

Capacity Building Training under Amrut 2.0 on 'Fit for Purpose Technologies for Recycle and Reuse of Wastewater

Standards for Recycle and Reuse of Wastewater

> Dr. Uday G. Kelkar, P.E., BCEE &

> > Ajit Savadi

NJS Engineers India Pvt. Ltd. January 11, 2023

Characteristics of Wastewater

- pH 6.5 to 9.0
- BOD 140 to 210 mg/L Typically designed for 250 Mg/L
- TSS 200 to 450 mg/L
- COD 100 to 200 mg/L
- Total Nitrogen 35 to 55 mg/L
- Ammonia as N < 15 to 35 mg/L</p>

Fecal Coliform – 100,000 MPN or higher
 NJS

Regulatory Standard for New Sewage Treatment Plants -

Discharge Standards NGT New – to be adopted

- pH 6.5 to 9.0
- BOD 10 mg/L or less
- TSS 20 mg/L
- COD 50 mg/L
- Total Nitrogen < 10 mg/L</p>
- Ammonia as N < 5 mg/L
- Fecal Coliform 100 MPN/100 mL or 230 MPN/100 mL?

Standards notified in 2017

- pH 6.5 to 9.0
- BOD 20 / 30 mg/L
- TSS 50 / 100 mg/L
- Fecal Coliform 1000 MPN/100 mL?
- Very interesting to note these relax standards are applicable to larger Metros who has funds or means to do reuse and will require higher costs when reuse is added in the future

Unit Operations in Wastewater Treatment

Biological

	Suspended Growth	Sludge oxidation dit	flow, Sequencing Batch reactor, cch, Orbal, Biolac, Cyclic ASP, eration, aerobic/aerated lagoons
Aerobic Process	Attached Growth	Trickling Filter and Trickling filter with solids contact system	Rotating Biological Contactors (RBC) ASP with fixed film packing
Energy Consumers	Submerged Attached Growth	Down flow attached growth pr submerged attached growth, bioreactor, membrane separa	fluidized bed
Anaerobic Process	Suspended Growth	Anaerobic contact process, a blanket process-UASB, anaer reactor system,	
Energy Producers	Attached Growth	Up-flow packed bed attached expended bed reactors, anaer bed reactors, anaerobic lagoo separation anaerobic process	obic fluidized ons, membrane

Combination of aerobic and anaerobic process are used in tertiary treatment for the removal of nitrogen and phosphorus from the wastewater

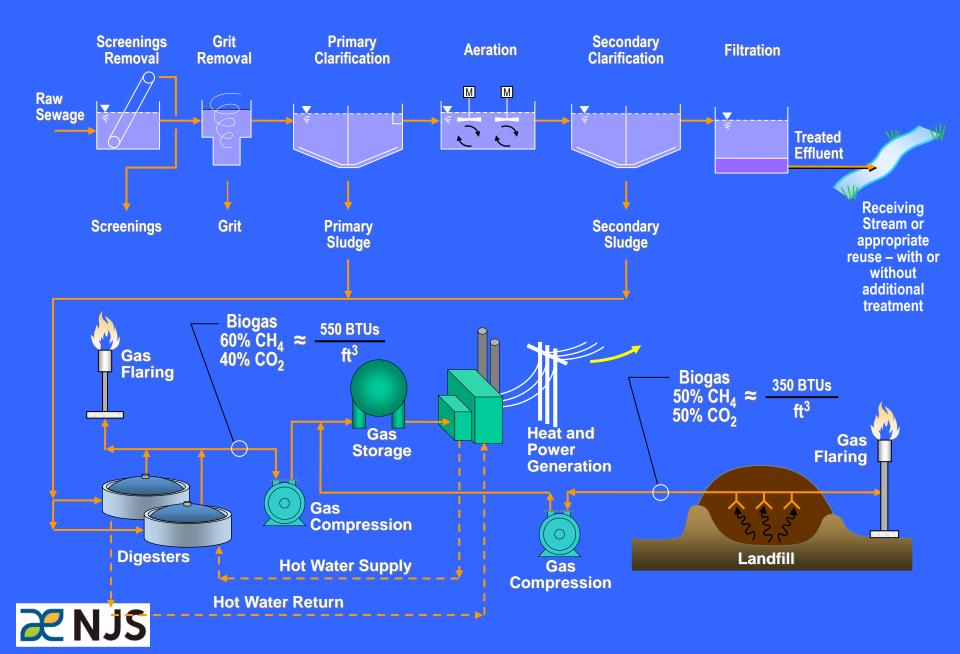
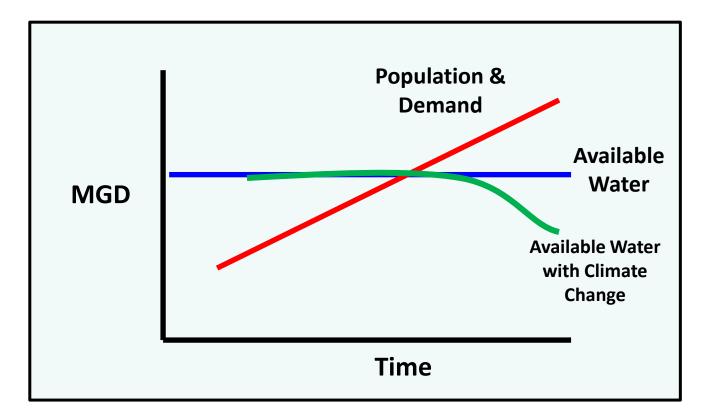


Table – 8: Typical range of effluent quality after secondary treatment (*Ref: Metcalf & Eddy/AECOM*, "*Water Reuse – Issues, Technologies, and applications*", *Page 314, Table – 7.7*)


			Range of indic			
			Conventional activated sludge ^b	Activated sludge with BNR ^c	Membrane bioreactor	
1	2	3	4	5	6	7
Total suspended solids (TSS)	Mg/L	120-400	5-25	5-20	≤1	≤15.0
Biochemical oxygen demand (BOD)	Mg/L	110-350	5-25	5-15	<1-5	≤10.0
Chemical oxygen demand (COD)	Mg/L	250-800	40-80	20-40	<10-30	≤40.0
Total organic carbon (TOC)	Mg/L	80-260	10-40	8-20	0.5-5	≤8.0
Ammonia Nitrogen	Mg N/I	12-45	1-10	1-3	<1-5	≤2.50
Nitrate Nitrogen	Mg N/I	0-trace	10-30	2-8	<10 ^d	≤2.50
Nitrite nitrogen	Mg N/I	0-trace	0-trace	0-trace	0-trace	0 - trace
Total nitrogen	Mg N/I	20-70	15-35	3-8	<10 ^d	≤7.5
Total Phosphorous	Mg P/I	4-12	4-10	1-2.0	0.5-2.0 ^d	≤1.0
Turbidity	NTU		2-15	2-8	≤1	≤5.0
Volatile organic compounds (VOCs)	µg/l	<100- >400	10-40	10-20	10-20	≤15.0
Metals	Mg/l	1.5-2.5	1-1.5	1-1.5	Trace	≤1.5
Surfactants	Mg/l	4-10	0.5-2	0.1-1	0.1-0.5	≤0.50
Total dissolved solids (TDS)	Mg/l	270-860	500-700	500-700	500-700	-
Trace constituents	µg/l	10-50	5-40	5-30	0.5-20	≤25.0
Total coliform	No./100ml	10 ⁶ - 10 ⁹	10 ⁴ - 10 ⁵	10 ⁴ - 10 ⁵	<100	10 ⁴ - 10 ⁵ (without chlorination)
Protozoan cysts and oocysts	No./100ml	10 ¹ - 10 ⁴	10 ¹ - 10 ²	0 - 10	0 - 1	0 - 10
Viruses	PFU/100ml ^e		10 ¹ - 10 ³	$10^1 - 10^3$	$10^{\circ} - < 10^{3}$	10 ¹ - 10 ³

^bConventioanl secondary is defined as activated sludge treatment with nitrification

PROVIDENT OF A Straight Reprocess

Plaque forming units

Population Is a Key Factor in the Water Scarcity Paradigm

What are major concerns on Reuse Water

- Usage Type of recycled water?
- Availability of Treatment Technologies?
- Operability and Reliability?
- No Confidence in Gov. or private O&M operators?

• Consistently meeting water quality Standards?

Important Issues to be Address

- The Problem
- Source Water Quality
- Regulatory and performance compliance
- Contingency planning
- Distance of bringing raw water
- Pumping head required and cost of producing the treated water
- Subsidy issue Industrial v/s domestic costs
- Conflict
- Policies

Perception, Risk and Branding

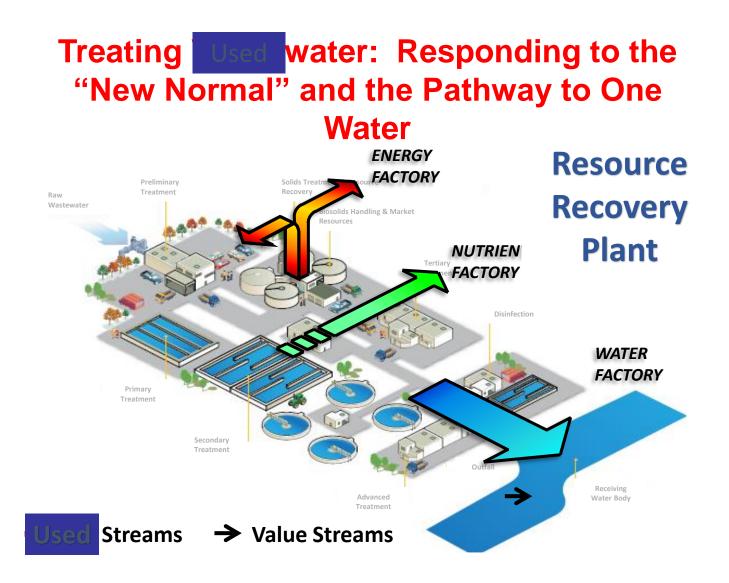
Reuse Categories

- Unrestricted Urban Reuse
- Restricted Urban Reuse
- Agricultural Reuse for Food and Non-Food Crops
- Recreational Impoundments
- Intrusion Barrier
- Environmental Wetlands

Reuse Categories (continued)

- Industrial Reuse
- Groundwater Recharge
- Indirect Potable Reuse
 - Spreading Basins
 - Injection
 - Surface Water Augmentation
- Direct Potable Reuse

Reuse Categories – being Applied in India


- Unrestricted Urban Reuse may be
- Restricted Urban Reuse not specifically
- Agricultural Reuse for Food and Non-Food Crops – Indirect with monitoring
- Recreational Impoundments None
- Intrusion Barrier None
- Environmental Wetlands few

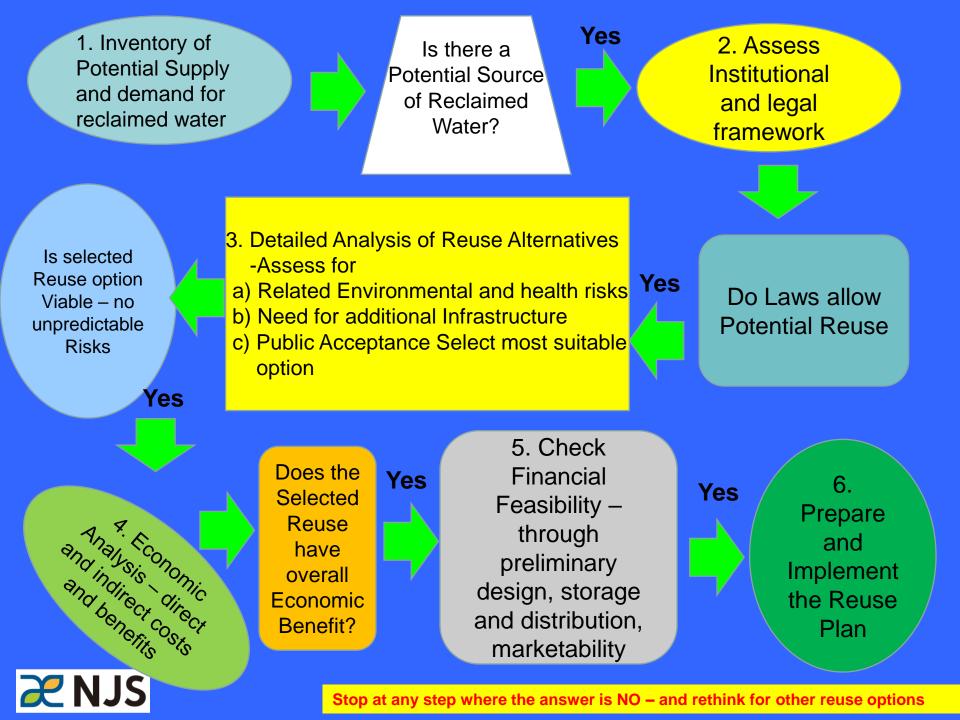
Reuse Categories (continued)

- Industrial Reuse Yes, specific areas but few Welspun, MSPGCL, RCF, CPCL. Pragati Power and new Power plant initiatives.
- Groundwater Recharge Some by design
- Indirect Potable Reuse none / not by design Agra WTP is an exception
 - Spreading Basins, Injection
 - Surface Water Augmentation none
- Direct Potable Reuse none

Regulations and Guidelines Vary Depending on Type of Reuse

(no national regulations in the U.S.)

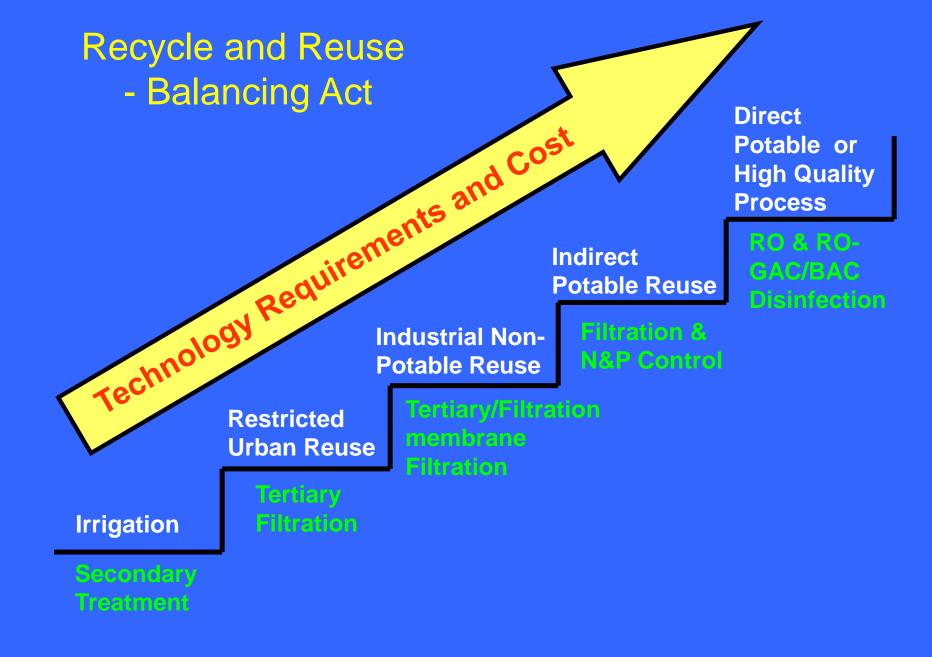
Type of Reuse


- Potable Reuse
- Agricultural Reuse on Food Crops
- Unrestricted Recreational Reuse
- Unrestricted Urban Irrigation Reuse
- Restricted Urban Irrigation Reuse
- Restricted Recreational Reuse
- Industrial Reuse
- Environmental Reuse
- Agricultural Reuse on Non-food Crops

Less Stringent Regulations

More Stringent

Regulations


Example: California's non-potable reuse regs involve treatment type and water quality (i.e., total coliforms and turbidity).

Technology selection criteria

- Reliable (proven and established)
- Recycled water quality and its consistency
- Wastewater generation from treatment process
- Operator requirement / automation
- Space requirement (may not be important for industrial areas due to appropriate allocation of land)
- Capital cost, O&M cost (Lifecycle cost)

Existing Standards for Reuse in India (CPCB, MOEF)

Class	Designated Best Use	Criteria
A	Drinking water source without conventional treatment but after disinfection	Dissolved Oxygen : 6 mg/l or more Biochemical Oxygen Demand : 2 mg/l or less Total Coliform : 50 MPN/100 ml
В	Outdoor bathing (Organised)	Dissolved Oxygen : 5 mg/l or more Biochemical Oxygen Demand : 3 mg/l or less Total Coliform : 500 MPN/100 ml
С	Drinking water source with conventional treatment followed by disinfection	Dissolved Oxygen : 4 mg/l or more Biochemical Oxygen Demand : 3 mg/l or less Total Coliform : 500 MPN/100 ml
E	Irrigation, industrial cooling and controlled waste disposal	Electrical Conductivity : 2250 mhos/cm Sodium Absorption Ratio: 26 Boron : 2 mg/l

Proposed Water Quality for Reuse

User	Required Water Quality	Indian Standard
Agricultural	Irrigation	Ξ
Domestic	Public access	С
Industrial	Per industry requirements	Negotiate with industries
Groundwater recharge	Indirect potable	E – with nitrification
Reservoir Recharge and source water Augmentation	Indirect potable	C – with nitrogen and phosphorus removal

Comparison of Agricultural Reuse Guidelines

Parameter	India Irrigation	WHO (A)	EPA Food	EPA Non-food
Fecal coliform	NS	≤ 1000	Nil	≦ 200
Intestinal nematodes	NS	≤1	NS	NS
BOD ₅	≤ 100	NS	≤ 10	≤ 30
Suspended solids	≤ 200	NS	≤ 30	≤ 30
Residual chlorine	NS	NS	≥ 1	≥ 1
TDS	≤ 2100	NS	NS	NS

Comparison of India Land Application Rules to WHO and EPA Guidelines for Unrestricted Reuse

Parameter	India	WHO		EPA
Parameter	Land App.	А	Prop.	Urban
F. Coli form	NS	≤ 1000	≤ 1000	Nil
Nematodes	NS	≤ 1	≤ 0.1	NS
TSS	200			<5
TDS	2100			NS
BOD ₅	100			≤ 10
Residual chlorine	NS			≥ 1
SOCs	Numerous			

NS = No Standard

Agriculture (Food and Non-food Crop)

Parameter	Units	Value
Intestinal nematodes	No./liter	< 1
Fecal coliforms	No./100 ml	Nil (for crop eaten raw) & <a>230/100 ml (for crops eaten cooked or non- edible crops) ** with new regulation of 100 MPN/100 ml this can be directly adopted
рН		6 – 9

Urban Non-Potable Reuse

Parameter	Units	Value
BOD ₅	mg/L	≤ 3
Turbidity	NTU	≤ 2
Fecal coliforms	No./100 ml	≤100
Chlorine residual	mg/L	≥ 1
рН		6 – 9

Environmental/ Recreational Reuse

Parameter	Units	Value
BOD ₅	mg/L	≤ 10
TSS	mg/L	Nil
Fecal coliform	MPN./100 ml	≤100
рН		6.5 – 8.3
Total Kjeldahl Nitrogen (as N)	mg/L	< 5 for impoundments, < 10 for Horticulture/ Golf Course
Dissolved Phosphorus (as P)	mg/L	1

Industrial Reuse

Constituent,		Industr	ial Applicat	ion	
mg/L	Boiler	Pulp and	Textiles	Petroleum	Cooling
	Feed	Paper		and Coal	Water
	0.01 – 0.4	20		75	100
Iron	0.01 - 0.4 0.05 - 1.0	0.3 – 1.0	0.1 – 0.3	1	
Manganese	0.01 – 0.3	0.05 - 0.5	0.1 - 0.3	•	
Manyanese	0.01 - 0.3	0.05 - 0.5	0.01 -		
Alkalinity as CaCO ₃	40 – 350	100	_	125	—
Chloride	-	200 – 1,000	—	300	100
TDS	200 – 700	—	100	1,000	_
Hardness as CaCO ₃	0.07 – 350	100	25	350	—
Ammonium-N	0.1	—	—	—	1 – 3
Phosphate-P	—	—	—	—	0.6
Silica	0.7 – 30	50	—	—	20
Color (Hazen)	—	10 – 30	5	_	_

Recommended Water Quality Criteria

Water Quality Parameter	Crop irrigation	Water exchange	Reservoir recharge	Ground- water recharge	Domestic non-potable
BOD ₅ mg/L	-	30	≤ 3	≤ 3	≤ 3
TSS, mg/L	-	50	≤ 5	—	-
Turbidity, NTU	-	-	5	—	≤ 2
Fecal coliform, #/100 ml	1,000	10,000	< 10	≤ 500	≤ 500
Intestinal nematodes, #/L	1	1	-	—	-
Total nitrogen, mg/L	-	-	≤ 10	≤ 12	-
Total phosphorus, mg/L	-	-	≤ 0.6	1.0	-
рН	6 – 9	6 – 9	6 – 9	6 – 9	6 – 9
Chlorine residual, mg/L	-	-	-	—	≥ 1
Drinking water standards	-	-	Yes	As required	-

Groundwater Recharge – in addition to BOD and TSS values

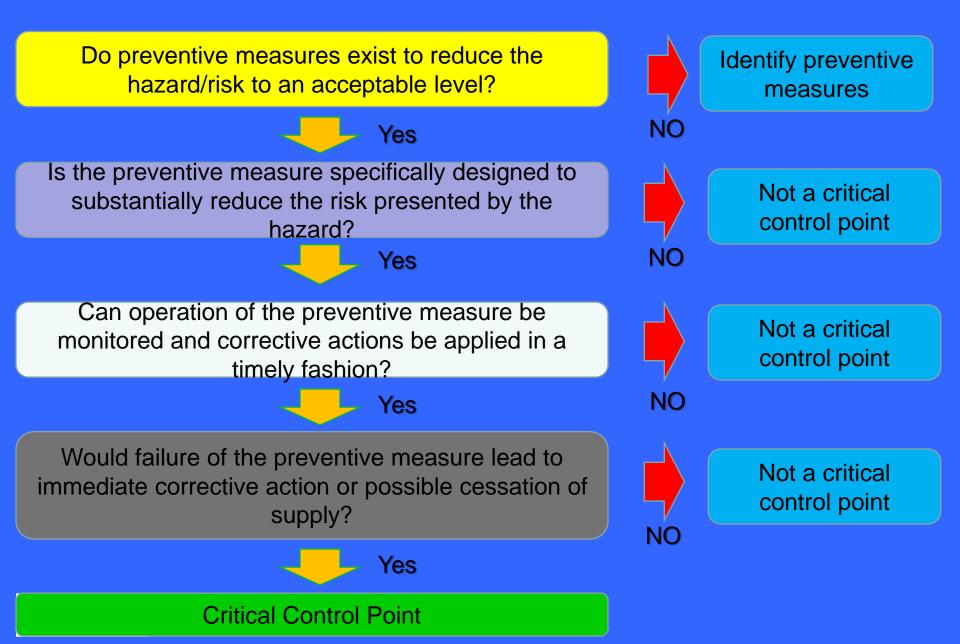
Parameter	Units	Infiltration Basins	Vadose Zone Recharge Wells	Direct Injection
Drinking water standards	mg/L	Not applicable	Not applicable	As applicable
Total nitrogen	mg/L	≤ 12	≤ 12	≤ 12
рН		6 – 9	6 – 9	6 – 9

Recycle / Reuse Framework

1. Commitment to responsible use and management of recycled water

System Analysis and Management

- 2. Assessment of the recycled water system
- 3. Preventive measures for recycled water management
- 4. Operational procedures and process control
- 5. Verification of recycled water quality and environmental performance
- 6. Incident and emergency management


Supporting Requirements

- 7. Employee awareness & Training
- 8. Community involvement
- 9. Research and development
- 10. Documentation and reporting

Review

- 11. Evaluation and audit
- 12. Review and continual improvement

Typical HACCP Approach

Typical Environmental Risks

Water Source

Treated Sewage

- Sewage Treatment Plant
- Sewer mining
- Centralized onsite treatment
- Greywater centrally treated
- Greywater
- Single household with no or minimal treatment

Uses/Pathways

Cross Connection

Fire Control

Intentional discharge (include allocation to the environment) Irrigation

Storage System

Washing

Unintentional discharge

Receiving environments & major endpoints

Air

Biota - Aquatic

- Terrestrial

Infrastructure Plants

Septic tank or sewage treatment plant (indirect)

Soiils

Water body
- Surface water
- Groundwater

Key Hazards

Boron

Cadmium

Chloride

Chlorine residuals

Hydraulic loading

Nitrogen

Phosphorus

Salinity

Sodium

PHPs & EDCs

Effects

Concentration

Contamination

Eutrophication

Loss of biodiversity

Nutrient imbalance

Odour

Pest and disease

Salinity & Sodicity

Toxicity

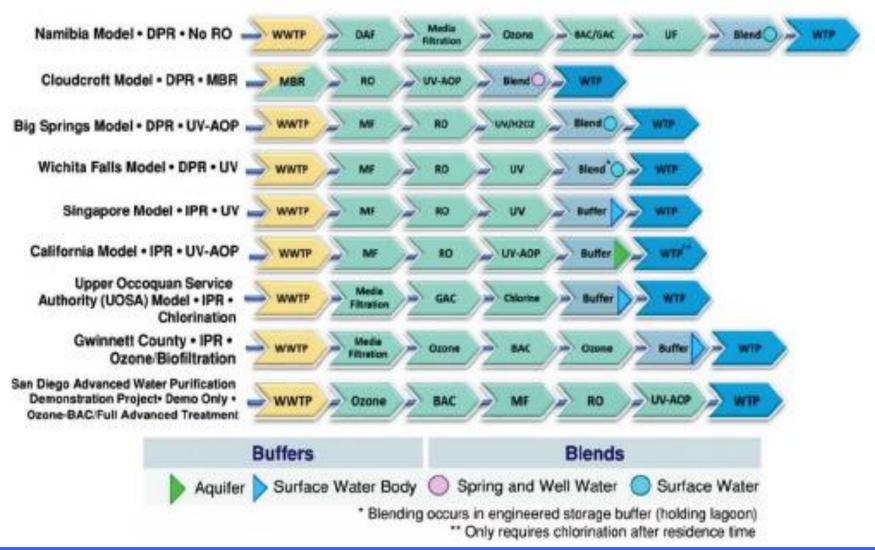
Waterlogging

Typical Treatment Requirements for Reuse

Reuse Application	Parameters of Concern	Possible Treatment Technologies
Agricultural irrigation	FC & other pathogens	Disinfection
Water exchange (swap)	None, if treated wastewater meets river discharge standards	—
Reservoir recharge	N, P, DWS	NAS, CFID, NTF, wetlands
Groundwater recharge	N, DWS	NAS, CFID, BAF, NTF, wetlands
Domestic non-potable	T, FC, TRC	GMF, Disinfection

FC – fecal coliform, N- nitrogen, P - Phosphorus, DWS – drinking water standards,

 \mathbf{TRC} – total residual chlorine, \mathbf{T} – turbidity

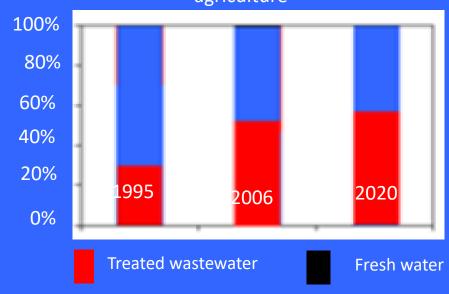

Indicative Log Removal of Pathogens

	Escherichia coli	Bacterial pathogens (including Campylobac ter)	Viruses	Coli Phage	Giardia	Crypto	Clostridium perfringens	Helminths
Treatment								
Primary treatment	0–0.5	0–0.5	0–0.1	N/A	0.5–1.0	0–0.5	0–0.5	0–2.0
Secondary treatment	1.0–3.0	1.0–3.0	0.5–2.0	0.5–2.5	0.5–1.5	0.5–1.0	0.5–1.0	0–2.0
Dual media filtration with coagulation	0–1.0	0–1.0	0.5–3.0	1.0–4.0	1.0–3.0	1.5–2.5	0–1.0	2.0–3.0
Membrane filtration	3.5–>6.0	3.5->6.0	2.5–>6.0	3–>6.0	>6.0	>6.0	>6.0	>6.0
Reverse osmosis	>6.0	>6.0	>6.0	>6.0	>6.0	>6.0	>6.0	>6.0
Lagoon storage	1.0–5.0	1.0–5.0	1.0–4.0	1.0–4.0	3.0–4.0	1.0–3.5	N/A	1.5–>3.0
Chlorination	2.0–6.0	2.0-6.0	1.0–3.0	0–2.5	0.5–1.5	0–0.5	1.0–2.0	0–1.0
Ozonation	2.0–6.0	2.0–6.0	3.0–6.0	2.0–6.0	N/A	N/A	0–0.5	N/A
UV light	2.0->4.0	2.0->4.0	>1.0 adenovir us >3.0 enterovir us, hepatitis A	3.0–6.0	>3.0	>3.0	N/A	N/A
Wetlands — surface flow	1.5–2.5	1.0	N/A	1.5–2.0	0.5–1.5	0.5–1.0	1.5	0–2.0
Wetlands — subsurface flow	0.5–3.0	1.0–3.0	N/A	1.5–2.0	1.5–2.0	0.5–1.0	1.0–3.0	N/A

æ

Contaminants	In Water As	Maximum Contaminant Level	
 Pharmaceuticals Personal Care Products Endocrine Disrupting Compounds and their metabolites 	Multiple organic and inorganic forms	Not applicable - Several compounds are listed on EPA's Contaminant Candidate List II (CCL III)	
Sources of Contaminant	Elimination from the bo	ody	
	Flushing of unused, or	expired product	
	Leachate from landfills		
	Rinse off from showering	ng or bathing	
	Agricultural runoff		
Potential Health Effects	Levels in finished drinking water supplies are 10 ³ to 10 ⁶ times		
	lower than therapeutic dose, or effect levels and given that no		
	health effects have been attributed to these compounds at		
	these low concentrations.		
	However, consumer se	nsitivity (emotional) to the presence of	
	these compounds have	e brought them to the forefront of the	
	industry and led to the	development of testing to evaluate	
	performance capabilities of residential treatment devices.		
Treatment Methods	Active media (carbon), Reverse Osmosis		
Point-of-Entry (POE)			
Point-of-Use (POU)	Peroxidation		

Various Treatment Schemes Employed Worldwide for Reuse Applications


Wastewater Reuse Agriculture

- Potential to irrigate 1-3 Million Ha
- 40% reduction in fertilizer use
- Nutrient potential of 0.63 0.73 tonnes/MLD
- Reduction in GW required for irrigation, resulting in energy savings ~30% in WW irrigated areas

Nutrients in wastewater (Indian cities)

Nutrient	mg/l
Nitrogen	10-100
Phosphorus	1 – 30
Potassium	16 - 500

Wastewater as a % of total water used for agriculture

ISRAEL'S EXPERIENCE

By 2020 60% of agricultural need met by treated wastewater, freeing water for other uses

Sources: Silva and Scot 2002 Minhas 2002; Qadir and Scott 2010 Naty Barak, World Bank, 2009

Recycle and Reuse for Agriculture: A valuable resource

- Treated urban
 wastewater
 (~38,000 MLD), if
 channeled to
 meet irrigation
 requirements,
 would provide
 ~14 BCM of
 irrigation water
- Potentially irrigate an area ranging between 1-3 million hectares.
 - Increase farm income by 30%

Tenth Five Year Plan	Major and Medium	Surface water fed Minor irrigation	
Potential created (Mha)	4.59	0.71	
WWI potential (Percent)	44%	~300%	
Nutrient Potential	Nutrient potential in WW ranges from 0.63 – 0.73 tonnes/MLD Upto 40% reduction in nutrient load possible Reduced fertilizer requirement may reduce the Government fertilizer subsidy burden by ~ 100 crores annually		
Energy savings	Reduction in groundwater pumping, associated energy requirements Saving potential of ~ 600 Crores annually		

Benefits of wastewater reuse for irrigation in ³⁸ select cities in India

City	Crop cultivated	Increase in yield (%)	Decrease in fertilizer use	Increase in pesticide use	Avg. Annual Incremental benefit (Rs./ha)
Indore	Wheat (Rabi) / Vegetables (Summer)	30-40%	50%	Almost double	36,752
Nagpur	Wheat (Rabi) / Vegetables (Summer)	30-40%	33%	Almost double	26,951
Jaipur	Wheat (Rabi) / Vegetables (Summer)	30-40%	50%	Almost double	37,790
Bangalore	Rice (Rabi), Sapota, Flowers (Summer)	30-40%	100%	Almost double	33,849
Ahmedabad	Rice and wheat (Rabi)	-	-	-	-14,640
Delhi	Okra	67%	60%	Increased by 50%	8,500
Kanpur	Paddy and wheat	Decrease in yield	-	-	6,166 (paddy) 954 (wheat)

Limitations to Industrial Reuse

- While economically viable, industrial reuse is limited by the availability of industrial clusters in the vicinity of the treatment plant
- CPCB has identified 88 industrial cluster in 20 States in India. Industrial reuse in these areas may be viable.

S.No	Potential for Industrial WW reuse	States	Quantity of WW (MLD)
1.	Nil / Negligible	Andaman & Nicobar Islands; Arunachal Pradesh; Assam; Bihar; Chandigarh; Dadra & Nagar Haveli; Daman & Diu; Goa; Jammu & Kashmir; Lakshadweep; Manipur; Meghalaya; Mizoram; Nagaland; Pondicherry; Sikkim; Tripura	Negligible
2.	5- 20%	Andhra Pradesh; Himachal Pradesh; Karnataka; Kerala; Orissa; Tamil Nadu; Uttarakhand; West Bengal	1,050
3.	20 – 30%	Haryana; Madhya Pradesh	590
4.	30 – 50%	Jharkhand; Maharashtra; Punjab; Rajasthan; Uttar Pradesh	8,000
5.	>50%	Chhattisgarh; Gujarat; NCT of Delhi	4,600

Benefits of wastewater recycle and ⁴⁰ reuse in agriculture

- Use of treated wastewater for agriculture can help farmers increase their earnings
 - Case studies reveal an average increase by Rs. 17,000 / Ha per annum on account of water availability and reduced fertilizer use
 - Potential to increase of about 30% in the farmer's income when the farmer uses of freshwater alone
- Channeling the entire quantum of treated wastewater towards agriculture has the potential to Support 1-2 million farmers.

Challenges for Agricultural Reuse

- Irrigation water charges in India (13th FC recommendation) are
 - Rs. 1,175/Ha Major irrigation command areas;
 - Rs. 588/Ha Minor irrigation command areas
- Charges amount to ~ 10-25 paise / kL.
 - The O&M cost of treating WW is significantly higher
- Treated wastewater used for irrigation presents many benefits to consumers, city governments and states
 - Assured and reliable water supply,
 - Nutrients present in wastewater,
 - Avoided costs of groundwater pumping
 - Avoided fertilizer subsidies

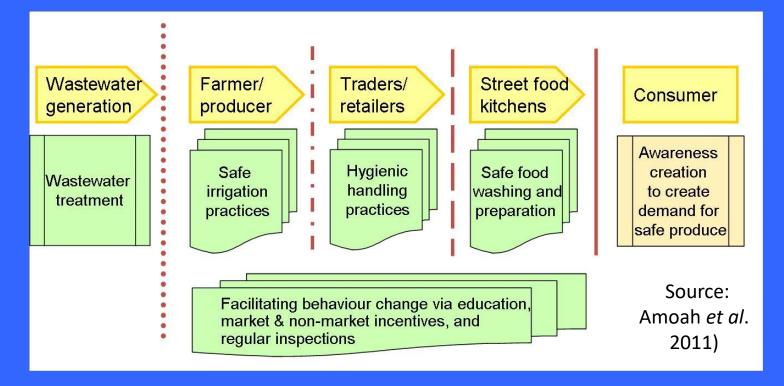
Utilities and city governments will need to explore sustainable business models aimed at different user categories, working in partnership with various State Government Departments and Agencies **ENJS** Health Considerations – Recycle and reuse of Wastewater

Risk of reuse for human and environment

Two significant risk factors:

Risk of consumption of food contaminated with fecal matter (pathogens) or chemicals from industrial effluents (heavy metals,).

Wastewater treatment can address both, especially if



industries have to treat their waste before release into any public sewers or treatment plants,

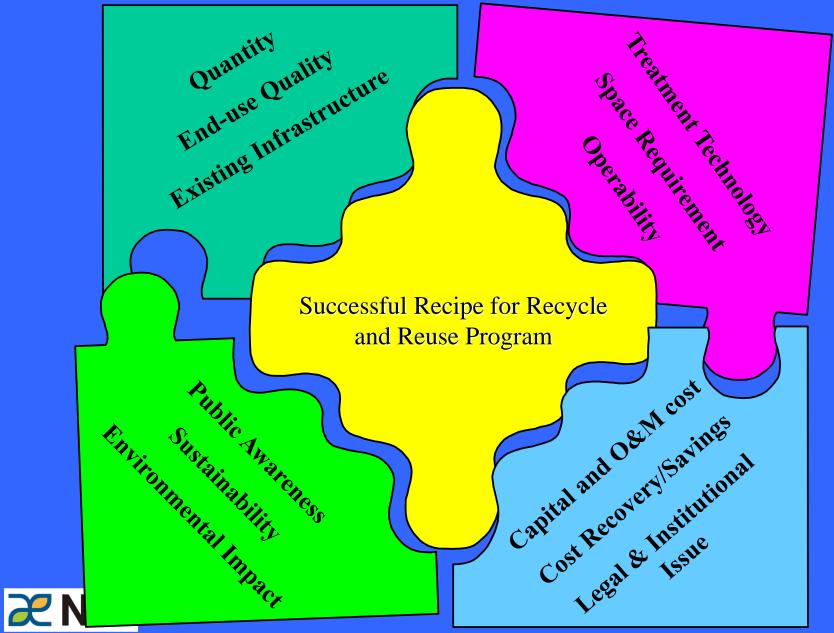
multiple barriers are used to take care of situations where farmers use a mix of untreated and treated wastewater or post-harvest contamination occurs.

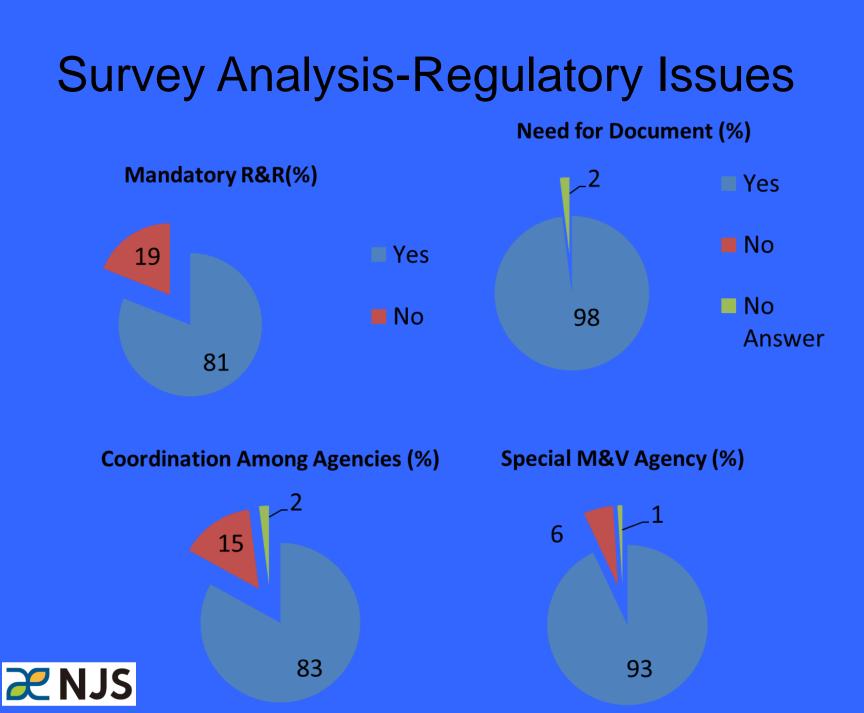
Multi-barrier approach for farmers and consumers ⁴⁴ as recommended by WHO

These additional safety measures (similar to the HACCP approach) can have a significant risk reduction potential where treatment is not comprehensive or failing with a high return on investment of US\$ 4.9 per US\$ invested (IWMI, 2014).

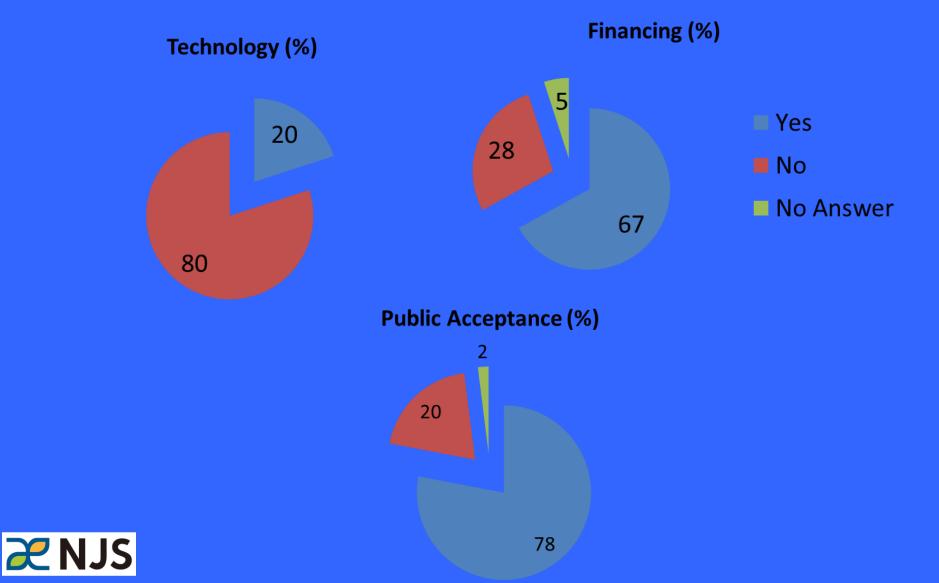
WHO Guidelines (3rd Edition)

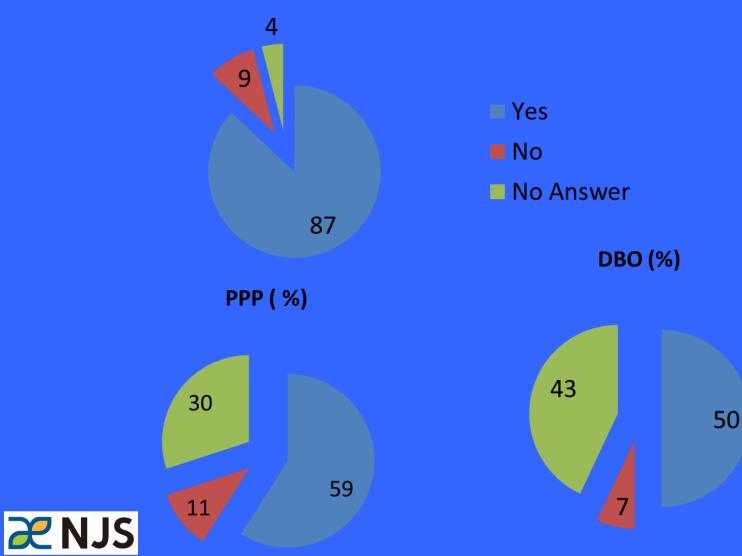
- Maximize the protection of human health and the beneficial use of important resources
- Guidelines provide an integrated preventive management framework for maximizing public health and environmental benefits of waste/wastewater use.


Volume 1: Policy and regulatory aspectsVolume 2: Wastewater use in agricultureVolume 3: Wastewater and excreta use in aquacultureVolume 4: Excreta and greywater use in agriculture



Recipe for Success




Survey Analysis-Other Issues

Survey Analysis-Models

Is Private Participation Welcome? (%)

Thank You

Contact Information Dr. Uday G. Kelkar, P.E., BCEE Cell: +91-9822401962

> Ajit Savadi Cell:+91-9727764800

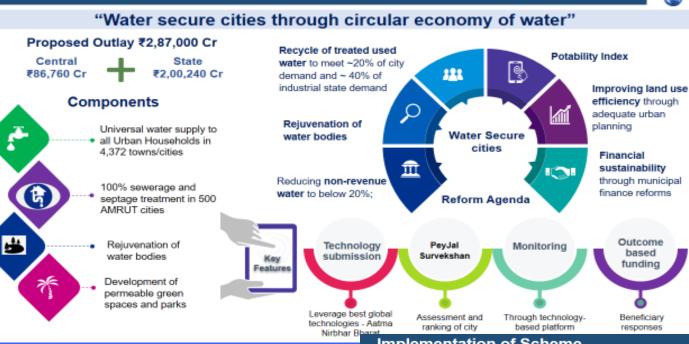
<u>uday@njsei.com</u> <u>Ajit.Savadi@njsei.com</u>

Capacity Building Training under Amrut 2.0 on 'Fit for Purpose Technologies for Recycle and Reuse of Wastewater

Business Model for Recycle and Reuse of Wastewater

Dr. Uday G. Kelkar, P.E., BCEE

Ajit Savadi

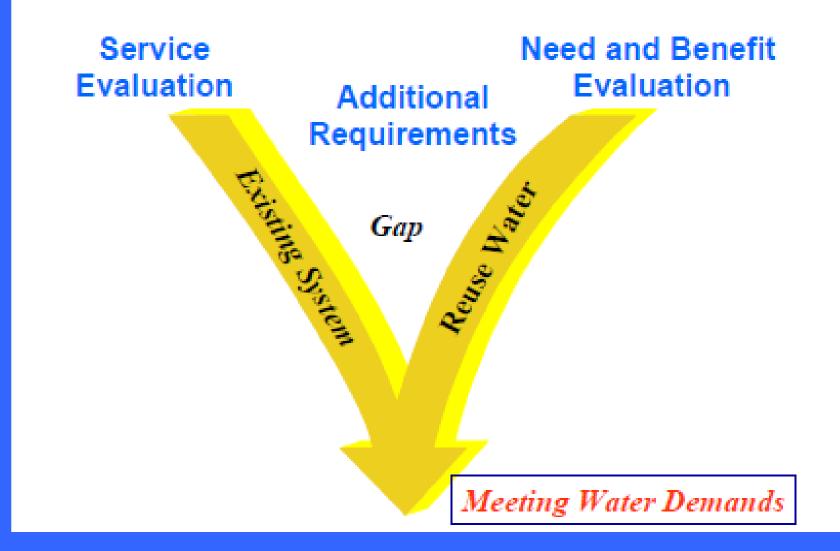

NJS Engineers India Pvt. Ltd. January 11, 2023

"No higher quality water, here is a surplus of it, be used for a purpose that can lolerate a lower grade."

United Nations, 1958

Focus on Water Sustainability – Water Secure Cities – as of 2021-2022 Financial Budget

Jal Jeevan Mission - Urban

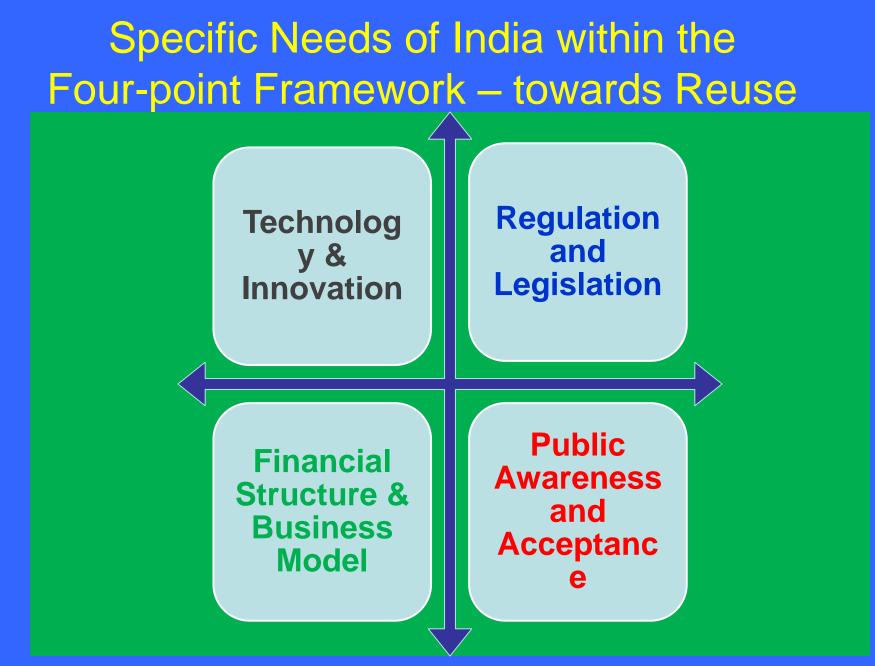


Implementation of Scheme

2NJS

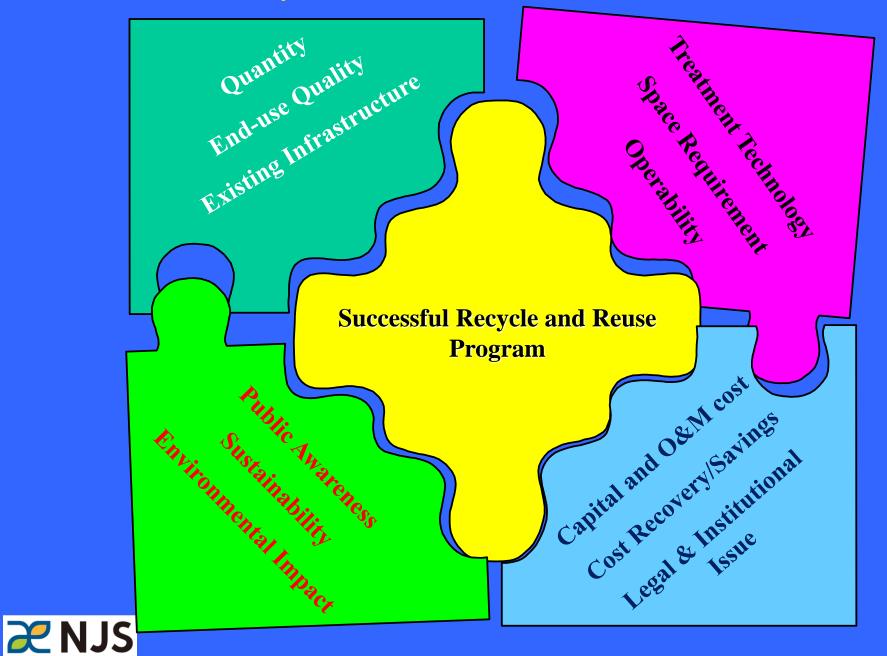
Conduct a GAP Analysis for Reuse

What are major concerns on Reuse WaterUsage Type of recycled water?


• Availability of Treatment Technologies?

• Operability and Reliability?

No Confidence in Gov. or private O&M operators?


• Consistently meeting water quality Standards?

Health Issues? or NJS

Recycle and Reuse – Action Items

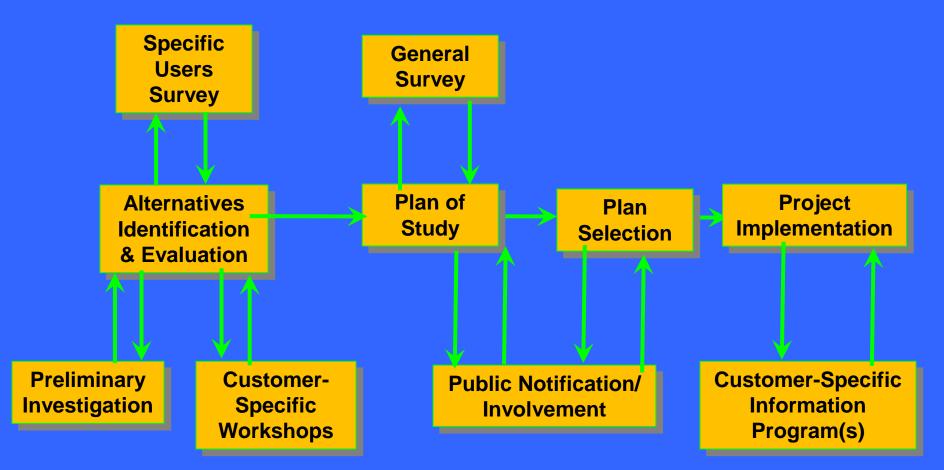
Technology selection criteria

- Reliable (proven and established)
- Recycled water quality and its consistency
- Wastewater generation from treatment process
- Operator requirement / automation
- Space requirement (may not be important for industrial areas due to appropriate allocation of land)
- Capital cost, O&M cost (Lifecycle cost)

Challenges to adoption

Sub-category	Description
 Insufficient access to capital 	 End user cannot access financial resources to pay for the necessary up-front costs of a lever
 High upfront costs 	 Upfront costs are too high even if access to capital is possible
 High transaction costs 	 The logistical cost of deploying a particular lever is prohibitively high
 Negative impact on constituencies 	 Certain levers (e.g., dams in specific areas) might disrupt the lives or adversely affect interests of constituents
 Pricing distortion due to subsidies 	 Levers are not attractive because end-user does not feel the impact of the true cost of water
 Fragmentation of opportunity 	 Certain levers require implementation and buy-in from many end-users to reach water-saving potential
 Limited management capacity 	 The existing capacity in government or private sector is not sufficient to carry out proposed projects
 Unclear or fractured lines of authority 	 The responsibility to implement a lever lies across agencies without a clear line of authority
 Water has low "mind-share" for end-user 	 Improving water efficiency is not a key element of end-user decision-making
 Difficult for end-user to measure consumption 	 Lever adoption is not reinforced because it is hard to evaluate, measure and verify savings
 Lack of awareness or information 	 End-users are not aware of how a specific efficiency lever or service can be beneficial
	 Insufficient access to capital High upfront costs High transaction costs Negative impact on constituencies Pricing distortion due to subsidies Fragmentation of opportunity Limited management capacity Unclear or fractured lines of authority Water has low "mind-share" for end-user Difficult for end-user to measure consumption

Typical Treatment Requirements for Reuse


Reuse Application	Parameters of Concern	Possible Treatment Technologies
Agricultural irrigation	FC & other pathogens	Disinfection
Water exchange (swap)	None, if treated wastewater meets river discharge standards	—
Reservoir recharge	N, P, DWS	NAS, CFID, NTF, wetlands
Groundwater recharge	N, DWS	NAS, CFID, BAF, NTF, wetlands
Domestic non-potable	T, FC, TRC	GMF, Disinfection

FC – fecal coliform, N- nitrogen, P - Phosphorus, DWS – drinking water standards,

 \mathbf{TRC} – total residual chlorine, \mathbf{T} – turbidity

Public Participation Program for Water Reuse System Planning

lley Recycle and Reuse Project

"Mother Nature has been recycling water for millions of vears. Now It is time we have. too."

Recycled Water Provides Benefits :

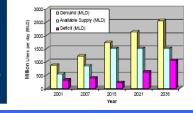
- A new source of water for Industry and Consumer Protection to the natural
- Savings in energy consumption fucing pumping cost
- Increasing future water reliability Cleaner rivers and lakes in the Region
- Adequate water supplies for urban growth needs

Regulation of Water Recycling:

A robust and independent regulatory framework, overseen by public health authorities, is necessary for the long-term success of a water-recycling program. Examples of existing regulations and criteria for water reuse exist in countries where there has been a long history of water reclamation and reuse

Recycled water is high quality treated wastewater effuent: minus pollutants contaminants and microbes and viruses. Nature recycles water continuously through the hydrologic cycle. The wastewater treatment plant emulates natural processes in a controlled, monitored and reliable manner to produce high quality water for additional cycles of beneficial reuse

The chemical and microbial quality of tertiary treated recycled water is not different from potable water from which it originated. One of the differences is the concentration of dissolved salk-such as sodium chloride and calcium carbonatewhich may be slightly higher concentrations. Whether or not these differences are bad depends on the level of salinity of the treated water and the composition of salts in the water


Over the nast 40 years, a number of research projects have been conducted in various parts of the world to study the public health issues in using recycled water. The chemical, physical & biological properties of recycled water can be kept within acceptable standards with suitable tertiary and advanced treatment processes. As such, treated recycled water can also supplement the need of potable demand in water scarcity area such as Bangalore, where the option is economically feasible.

Why It is Necessary to Use Recycled Water in Bangalury Area?

The Bangaluru City area is water-short now, and all water resources are stressed beyond their capacity including Cauvery River and Arkavathy River. Anticipated oppulation increases and future development will evert even greater stress upon these water supplies – widening the gap between supply and demand. The graphic depiction below dramatically illustrates the impending water crisis in the region. New sources of water are needed to help close the gap that are reliable, least expensive, and technologically feasible. Most importantly recycle and reuse has been practices worldwide for a variety of applications including indirect potable use, e.g., Singapore and other water utilities in USA.

With proper treatment process and with adequate safety systems, high quality reclaimed water can be used safely where it is most appropriate, and in augmenting the existing resources

Water Demand and Deficit in Bangalore

How is Recycled Water Treated?

Wastewater from houses and business centres in Bangalore are piped through sanitary sewers to wastewater treatment plants where it progresses through primary, secondary, and tertiary stages of treatment before it is disinfected and discharged to natural rivers and crains within the Bangalore Area that flows downstream and is wasted. Instead of fully wasting the water some part of this water is treated through advanced treatment processes like, ultrafitration membrane and granular activated carbon and could be reused to augment the water resources. The water that is carbon and could be reused to augment the water resources. treated through these advanced processes is most of the times of potable quality

Primary treatment is a gravity process that allows solid matter to either float to the top or settle to the bottom and is then removed as sludge

Secondary treatment uses microbes to digest dissolved organic matter, remove nutrias such as nitropen and phosphorus and small waste particles that are too light to settle out. As these microbes eat, grow and die, their bodies fall to the bottom, leaving water that is over 85 percent pure.

Tertiary treatment uses a multilayered filter composed of sand, coal, and stone, to remove remaining suspended particles

Advance treatment such as Microfiltration/Ultrafiltration, Reverse osmosis etc. can be added to improve removal of bio-chemical parameters even further, making the water 98% pure

Disinfection involves use of chlorine, ozone or ultraviolet radiation, to destroy bacteria, viruses, and other pathogens that may remain after these treatment steps. At this stage, the water is over 99 percent pure and can be used for nearly all purposes including indirect potable applications.

Water Quality Achievable in Recycled Water

Water quality parameters	Unit	US EPA / WHO ^b	NEWater Factory
Color	Hazen units	15	<5
pH	Unitless	6.5 - 8.5	5.2 - 6.2
Conductivity	µS/cm		39.6 - 71.1
Alkalinity	Mg/l as CaOO ₂		8
Total Dissolved Solids	Mg/I	500	22 - 41.3
Hardness	Mg/I as CaOO ₂		<5
Fluoride	Mg/I	1.5	0.18 - 0.22
Nitrite	Mg/Las N	0.91	0,38
Ntrate	Mg/Las N	10	0.49 - 1.65
Ammonia	Mg/I	1.5	0.35 - 0.57
Chloride	Mg/I	250	3.6 - 10.9
Turbidity	NTU	5	< 0.1
Aluminium	Mg/I	0.2	0.09
Iron	Mg/I	0.3	< 0.003
Manganese	Mari	0.05	< 0.003
Sulfate	Mg/I as SO ₄	250	0.16 - 0.54
Zinc	Mg/I	3	< 0.004
Silca	Mg/i as SiO ₂		0.21 - 0.32
Phosphate	Mg/Las P		0.011 - 0.044
Sodium	Ma/l	200	5.1 - 9.6
TOC	uo/l		60 - 90
Total Coliform	Counts/100mi	ND ⁴	<1
Fecal Coliform	Counts/100ml	ND ⁴	<1
Clostridium perfringens	Cfu/100ml		<1

*Adapted from Singapore Water Reclamation Study (2002) *Lowest limit of either the US EPA 1998 surface water regulations or WHO 1993 guidelines for drinking water Taken from analytical results for the months of June and July, 2000

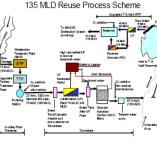
^dND = Not detectable

"Implementing an Indirect Water Reuse Program in Bangalore'

BWSSB has embarked on a ew vision in Augmenting its Water Resources and has initiated a V-valley reuse Project and has initiated a one rear pilot-scale ultra-filtration nembrane treatment process mimicking the project and is continuously monitoring the treated water quality for a number of chemicals including natural and synthetic compounds and microbial contaminants.

Effluent water quality from the pilot plant indicates that the water is of high quality meeting potable standards.

BWSSB's Integrated Water Resource Management – V-Valley Proiect


Under the V-valley Project, BWSSB is interested in augmenting its existing V-valley sewage treatment plant (STP) for enhanced removal of biological oxygen demand, and nutrients such as nitrogen and phosphorus from the secondary treated effluent. The 135 MLD secondary treated effluent will then be processed through tertiary process of media filtration for further removal of solids and suspended material.

This tertiary treated water will then be chlorinated to achieve a total of 4 hours of disinfection time. The chlorinated water will then be pumped from V-valley plant to 23 Kms via 1300 mm MS pipeline to Tarverkare.

At Tarverkare, the water will be further passed through 0.04 micron nominal pore size, PVDF, ultrafitration (UF) membrane for removal of colloids, dissolved natural organic matter and any remaining microbial contaminants bisobre ratatiat opposite inaute and any remaining the load obtainmaints (which are typically larger than 0.04 micron size). The permeate from the ultraffittation process will then be passed through Granular Advated Carbon (GAC) beds for the removal of any remaining synthetic organic chemicals, pesticides, endocrine disrupting chemicals (EDCs) and personal care products. To this effluent asmit dose of chlorine will be added to maintain products. the disinfectant level before the high quality water is discharged to the Arkavathy River

The high quality treated water will then travel through the natural course of Arkavathy River for a distance of seven kilometres before getting merged into the TG Halli Reservoir. The mixed water will have an average of 200 days of retention time in the TG Halli reservoir. With this the TG Halli reservoir will get continuously augmented with the high quality treated water.

As part of the V-Valley project, the existing TG Halli water treatment will be rehabilitated with membrane fitration including partial reverser osmosis (RO) process to 135 MLD. This new rehabilitated water plant will be able to process the water from the TG Halli reservoir in meeting all the drinking vater standards before the water is supplied back to BWSSB consumers for

IWRM V-Valley 4000 litres per day Pilot

Bandalore can become

water surplus from a

water stress region with

implementing indirect

water reuse and will be

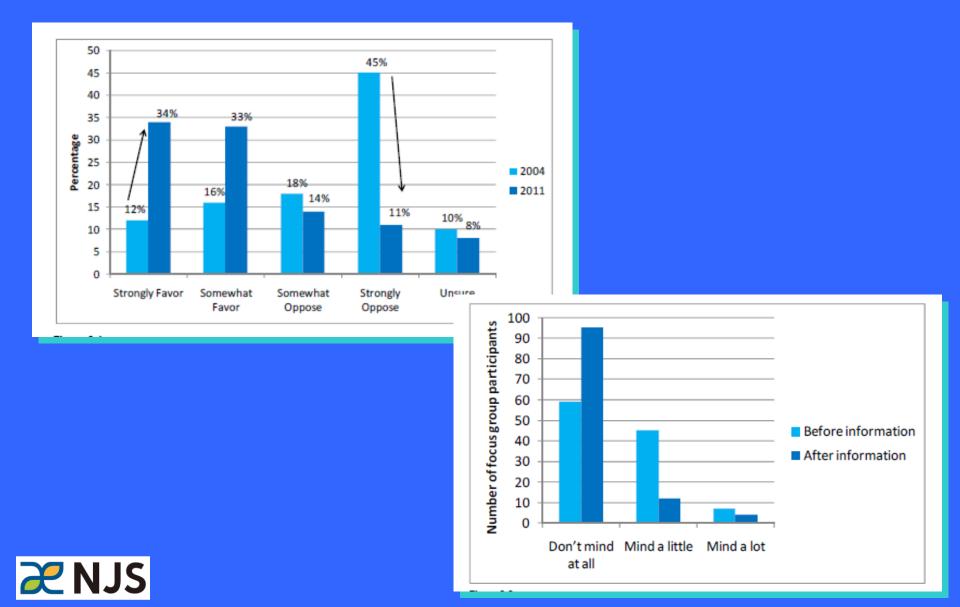
the leader in India in

showcasing effective

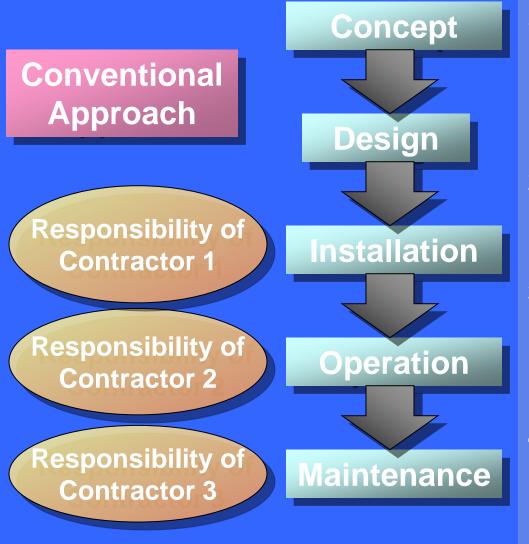
application of recycle

reuse for indirect potable

use.



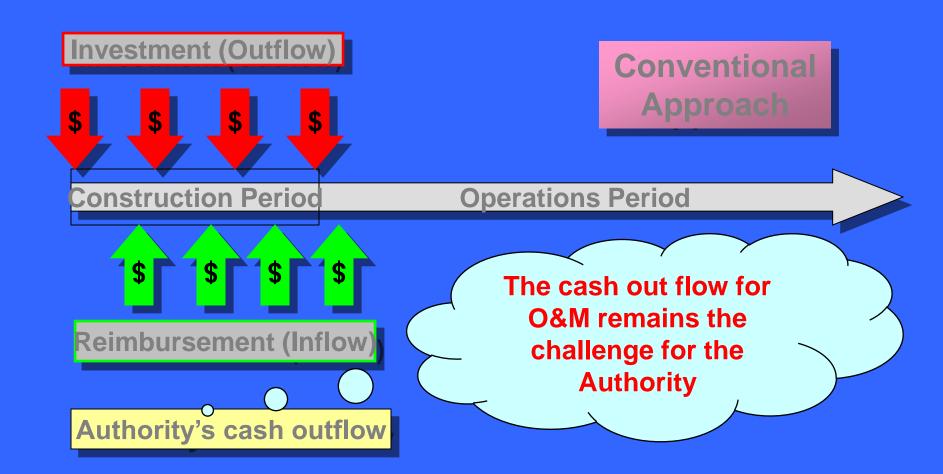
BWSSB V-Valley Reuse Project Detailed IEC material and Brochure for Public Awareness Campaigns


2NJS

For additional information and to enquire about BWSSB's plans for use of recycled

Public Outreach – How things change

Project Development: Conventional

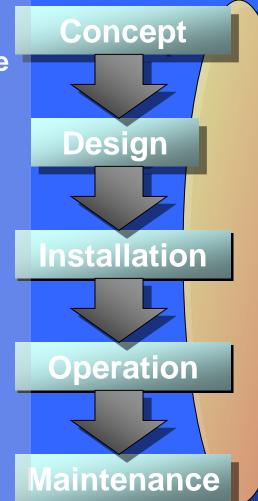


presentation 2009

So, what are the problems ?

- 1. Authority has no control on the construction time – Hence, time – overrun
- 2. Authority has no control on the cost – Hence Cost-overrun
- 3. Authority has to pay entire cost by the end of the construction – constraint on cash flow
- 4. Operational involvement
 - **1. Multiple contractors**
 - 2. Admin overhead

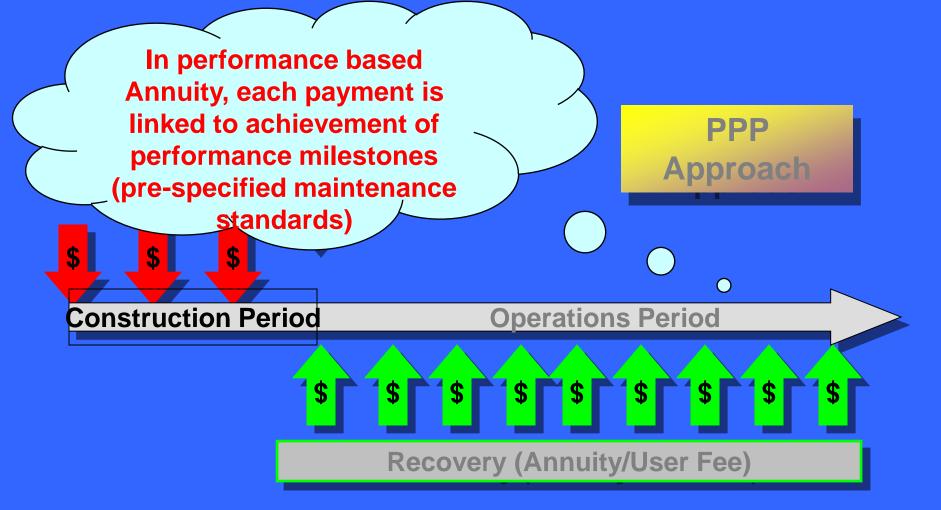
Contractor's Cash Flow



Project Development: PPP /Hybrid Annuity Model (HAM)

So, what about that?

- 1. Authority only conceives the project
- 2. Developer would design to required specs
- 3. Developer to invest money and recover during O&M period
 - 1. Either as User Fee or
 - 2. As Annuity
- 4. Developer assumes risk of Cost & Time overrun and operations



PPP Approach

Developer's / Contractors Responsibility

Developer's Cash Flow: Annuity/User Fee

Authority's cash outflow (In case of Annuity)

In a Nutshell

	Conventional	PPP with Annuity model
Design Risk	Authority's	Developer's
Cash Flow Risk	Authority's	Developer's
Cost and Time Over run	Authority has no control over it	Developer has inherent incentive to control time & cost
Operations Period	Authority invests substantial time and manpower	Independent Engg-monitoring Developer bears the risk of operations
Performance Standard	The contractor is already paid for, hence no control	Future payments to developer are linked to the performance
Revenue (Demand) Risk	Rests with Authority	PPP (Annuity)- with Authority PPP (User Fee) – with the developer

Risk/Barriers to Implementation

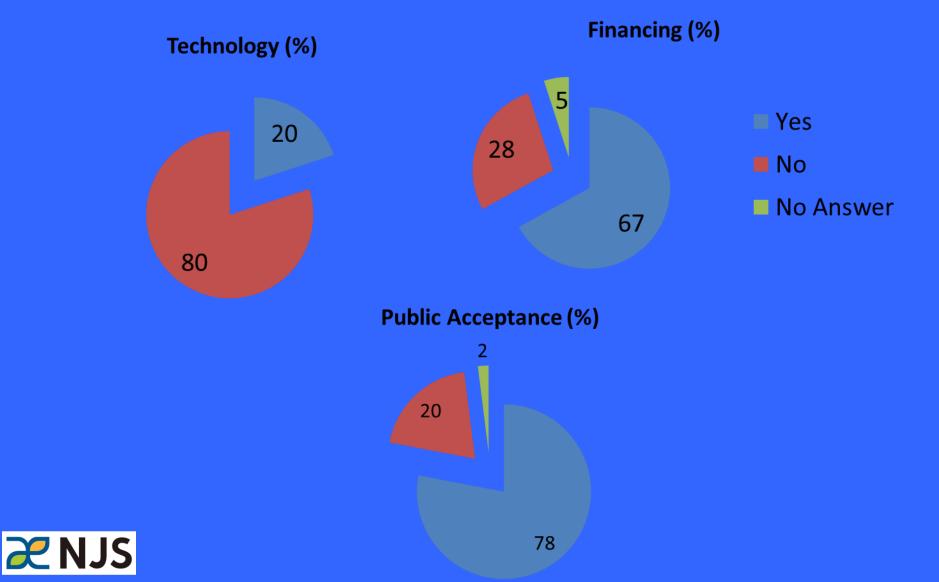
Private Sector

- Presently limited technical and financial resources are involved – L1 becomes a big stumbling block in selecting quality contractors.
- The time taken for completing all the formalities
 /documentation is too long -
- Lack of Timely Payments

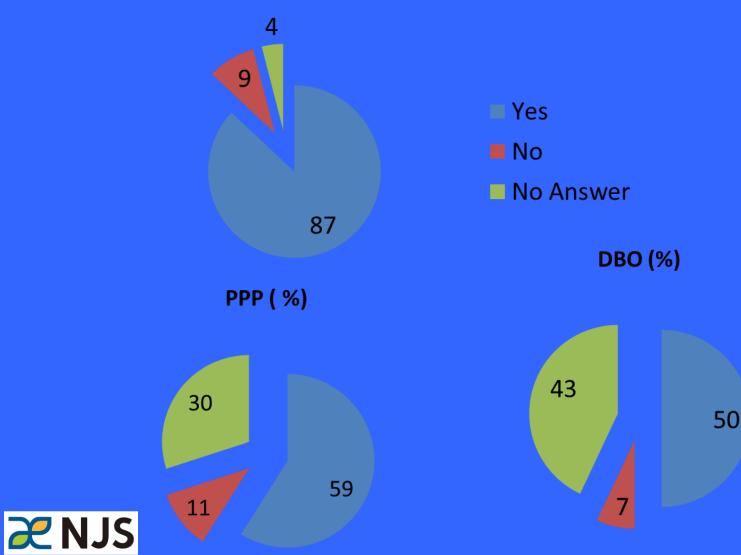
Key Issues for Private Sector Participation

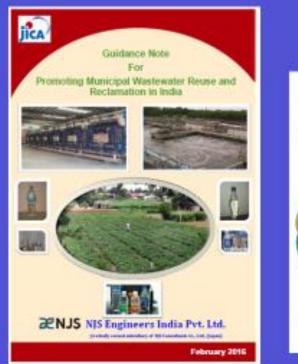
Risk Assessment and Mitigation

- Quality and Quantity of Wastewater,
- Liability due to presence of Hazardous waste,
- Change in duties and taxes
- Inadequate Infrastructure

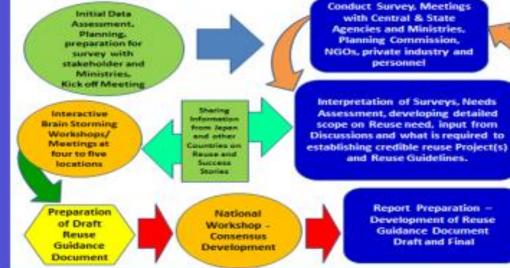

Key Issues for Private Sector Participation

- Commercial Viability
 - Capital Subsidy
 - Interest subsidy
 - Guaranteed Buyback, Taxation, Tariff Revision
- Other Incentives
 - Tax Credits
 - Trust Funds
 - Renewable Energy Production Incentive (REPI)




Survey Analysis-Other Issues

Survey Analysis-Models


Is Private Participation Welcome? (%)

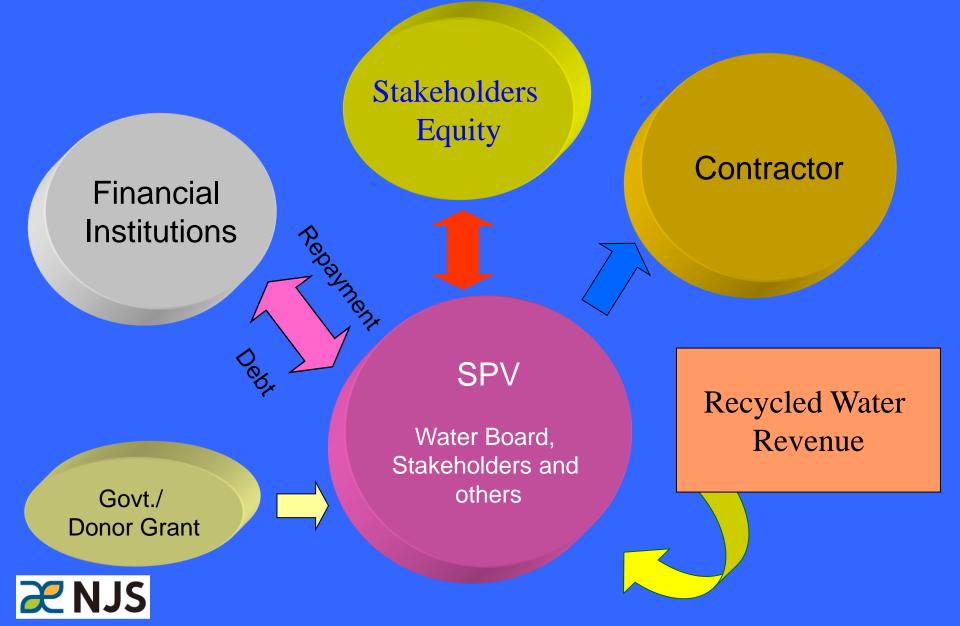
Development of Reuse Guidance Document

NJSEI/NJS Team's Proposed Work Plan

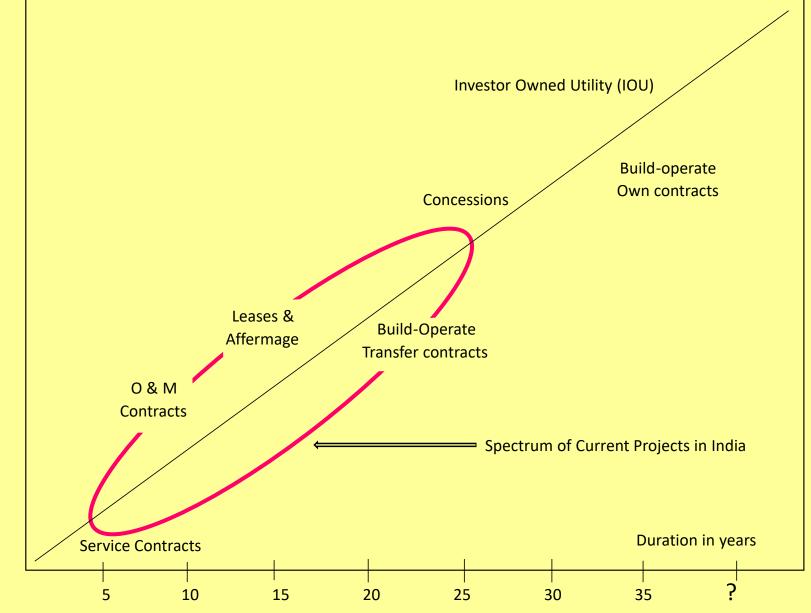
Promoters of Recycled Water

Policy Development for R&R

- Guidance Document with legal & Institutional drivers
- Commercial/Fiscal incentives
- Water Quality Regulation and monitoring
- Arbitrations
- Risk Management Framework


Implementation of R&R

- Demand Assessment and Marketing
- Financial and Institutional framework
- Public Awareness Campaign
- Water Purchase and Sale agreements
- Water Quality Monitoring
- Customer Service


Commitment to use Recycled Water

- Infrastructure for use of Recycle water within their premises.
- Water Quality and Quantity Bench-marks.
- Point of use treatment if required.
- Promotion of Recycled water

Suggested Financial Model for Project Implementation

Typical Business Models

Economic & Financial Analysis

Financial analysis		Economic analysis		
			Benefit of increased prosperity and resilient	
		Social costs	communities	
			Benefit of protected public	
		Environmental costs	health and ecosystems	
Distribution costs		Distribution costs	Benefit of improved water quality and flows	
Storage costs	Colos Devenus	Storage costs	Benefit of cost savings	
Retrofit costs	Sales Revenue (water, nutrients,	Retrofit costs	(new supply)	
	sludge, energy,		Benefit of cost savings	
Treatment costs	carbon)	Treatment costs	(disposal)	
Costs	Revenue	Costs	Benefits	

Institutional Reforms to Promote Recycle and Reuse*

- Develop policy and guidance on recycled wastewater standards based on intended use
- Prioritize development of recycled wastewater schemes through an appropriate incentives structure within the Central Government sponsored schemes (such as the Atal Yojana).
- Develop guidance on cost recovery for utilities, encourage (and incentivize) utilities to invest in power generation at STPs.
- Develop an incentives framework for Cities to promote wastewater recycle and reuse, aligned with SDG targets for wastewater reuse.

*Adapted from WSP Advisory on Recycling & Reuse of Wastewater

Reforms for WW Recycle and Reuse Central Level

- To Promote Collection & Treatment
 - Policy guidance on universal sanitation access
 - Sewage management rules
 - Mandatory collection of all wastewater
 - All households to connect to network when available
 - All ULBs to provide access to such network & Treatment infrastructure
 - Utilities to develop sanitation master plan
 - ULBs to treat wastewater to predefined standards

*Adapted from WSP Advisory on Recycling & Reuse of Wastewater

- Inter Ministerial coordination for guidance on:
 - Regulatory framework for IWRM
 - Recycled wastewater standards
 - Development of reuse schemes through national programs
 - Incentive schemes
 - Additional funds for achieving pre-defined targets
 - Reuse of wastewater plans a pre-requisite for any assistance from central funds
 - Awards etc.
 - Incentives for Users

Potential Contract Structure

- Private sector operator will provide technology, construction and maintenance support
- Financing construction will be the purview of the ULB through loans / grants from Govt.
- The same contractor will be responsible for maintaining the STP for the next 5-6 years based on a management contract for which he will be paid a management fee;
- A single contract document shall be developed, where the Net Present Value (NPV) of the Capital cost and the O&M cost for the next 15 years will be calculated and the operator with the 'least' NPV need to be chosen for implementation.
- The operator will be responsible for the technology he provides and for maintenance based on specific output targets

Structuring WW recycle projects

Financing and Implementation arrangements

Cost Recovery – User charges Impact of financing arrangements

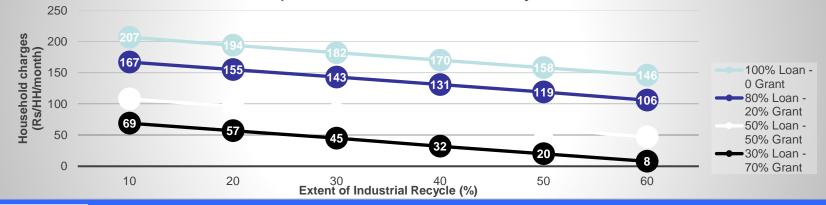
Rate of Interest (%)	Average household user charge (Rs/month/hh)					
	100% Loan - 0 Grant	80% Loan - 20% Grant	50% Loan - 50% Grant	30% Loan - 70% Grant		
3	159	129	83	53		
4	173	140	90	57		
5	188	152	98	62		
6	204	165	106	66		
7	220	178	114	71		
8	237	191	122	76		

Household Charges to be Levied for Full Cost Recovery Impact of financing arrangement Household charges (Rs/HH/month) 0 0 0 0 Rate of Interest (%) 100% Loan - 0 Grant 80% Loan - 20% Grant 50% Loan - 50% Grant

Cost Recovery – User charges Impact of industrial recycle

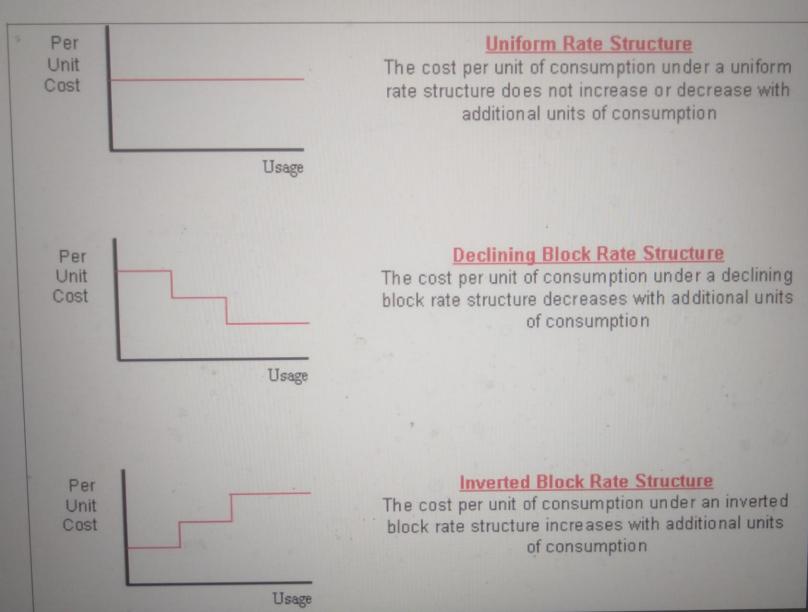
Tariff for	Average household user charge (Rs/month/hh)					
industries (Rs./kL)	20% recycle - 100% Loan	30% Recycle - 100 % Loan	20% recycle - 50% Loan	30% Recycle - 50% Loan		
10	209	197	111	98.5		
12	204	190	106	91		

Household Charges to be Levied for Full Cost Recovery Impact of industrial recycle and tariff 250 Household charges (Rs/HH/month) 20% recycle - 100% Loan 200 197 150 20% recycle - 50% Loan 100 91 -30% Recycle - 50% Loan 50 0 10 12 Industrial tariff (Rs. kL)


Cost Recovery – User charges Impact of extent of industrial recycle

35

Extent of	Average household user charge (Rs/month/hh)					
Industrial Recycle (% of total recycle)	100% Loan - 0 Grant	80% Loan - 20% Grant	50% Loan - 50% Grant	30% Loan - 70% Grant		
10	221	182	123	83		
20	209	170	111	71		
30	197	158	98	59		
40	185	145	86	47		
50	173	133	74	35		
60	160	121	62	23		


Household Charges to be Levied for Full Cost Recovery

Impact of extent of industrial recycle

2NJS

Overview of variable charge rate structures

Thermal Plant Cooling Water – Nagpur, CPCL, IOCL-Mathura, and other Refineries

Lake Restoration – Hyderabad, Bhopal, Delhi, Bangalore, Jaipur Industrial Usages in large Cities – Mumbai, Chennai, Surat, Delhi, Gandhi-Dham-Anjar

Reuse Projects – Presently in India – Ongoing or completed

Agricultural and Horticultural – Many large Cities

Present Indian Examples

Indirect Potable – Pilots (study) Bangalore., Hyderabad, Delhi, Pune, Chennai

Urban non-potable application in buildings – Govt./Semi-Govt./Private

2NJS

Water Reuse Policies at National Level

2008	2010	2012	2013 & 2016	2015	2014 to 2029	2019 to 2021
National Urban Sanitation Policy – Endorses reuse of Wastewater , min 20% in a City	Service Level Bench marking frame work encourages reuse in Cities	JNNURM 63 Cities – ULBs, Corporations with Central Funding, 100% Wastewater treatment + development of reuse bylaws and promote National Water Policy – recognizes water reuse	CPHEEO – MoHUA – Sewerage Manual with Reuse Plans and Designs. CH7. In 2016 Reuse Guidelines as amendment to Ch. 7 – JICA Assisted. Niti Aayog – promoted Reuse of WW for self sustainability	AMRUT & Smart City Mission Encourages Cities to provide all basic needs in sanitation and water supply – encourages reuse of WW for sustainability Some states like TN, AP, RJ, MH, GJ, MP, developed state wide reuse guidelines.	Formation of NMCG – Development of Water Reuse Policies for Power Plants, Railways, Refineries, Agricultural. ZLD for polluting Industries. Development of Reuse Guidelines in partnership with EU – On	National Water Framework – Law – Draft Gazette Notification for reuse of WW in 50 Km radius for Thermal power and Refineries Water Secure Cities – Jal Jeevan Mission Urban
			odotalitability		Going	

Going

Reuse Potential in India

- By 2030 collection of 80% of Urban Wastewater could generate 17 BCM of water annually.
- With appropriate treatment and reuse could suffice 75% of Industrial water demand and ¼ th of potable water demand
- Recycled wastewater from 465 Class I cities (i.e., Cities with 100,000 and above population) and 3894 Class II Cities (population between 50,000 to 99,000) could meet ¼ th of the existing Industrial demand including Energy demand

Factors Affecting Market Viability of Reuse water in India

Sanitation in Smart Cities 41 Aligned to the UN Sustainable Development Goals (SDG)

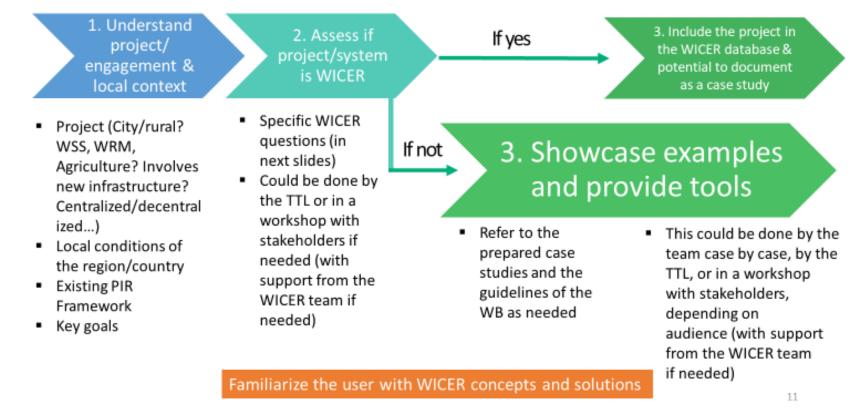
- Goal 6. Ensure availability and sustainable management of water and sanitation for all
 - Wastewater flows treated to national standards, by municipal and industrial source
 - Total water resources used
 - Focus on Integrated Water Resources Management
- Goal 11. Make cities and human settlements inclusive, safe, resilient and sustainable
 - Focus on sustainable development strategy for each urban agglomeration

Source: Indicators and a monitoring framework for Sustainable Development Goals: A report by the Leadership Council of the Sustainable Development Solutions Network; July 2014

Smart City - Sanitation Financing

- The recurring expenditures (annual expenses) for the project to include the following components:
 - Expense incurred towards operation and maintenance of the STP and network
 - Debt servicing towards the loan component of the project cost
 - Management fees for the service contractor providing operation assistance
 - Cost Recovery through:
 - Revenue from sale of wastewater especially to high-end clients
 - User charges to recover balance costs including debt servicing
 - Graded tariff structure based on size of household

A start

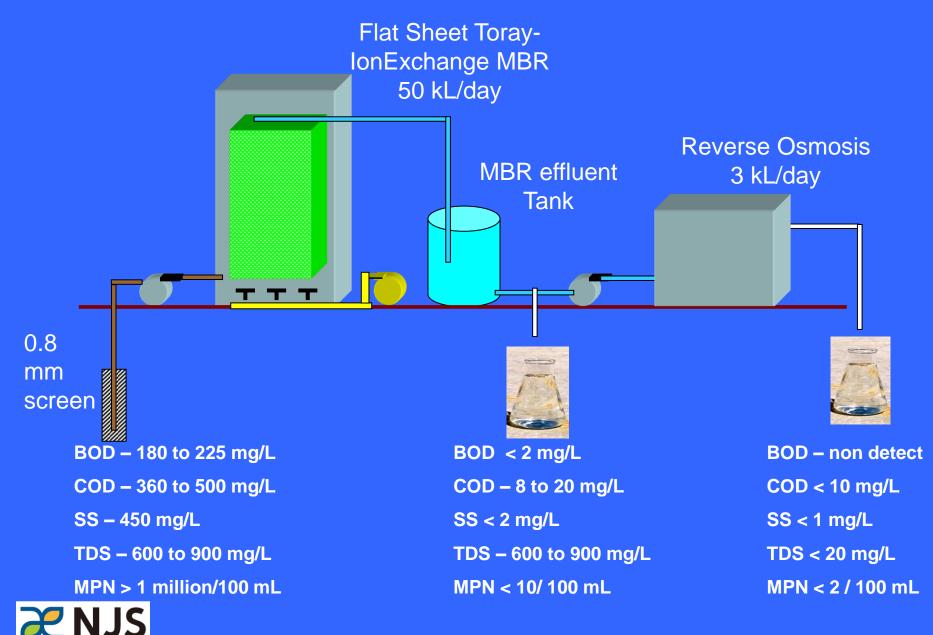

Harmonization:

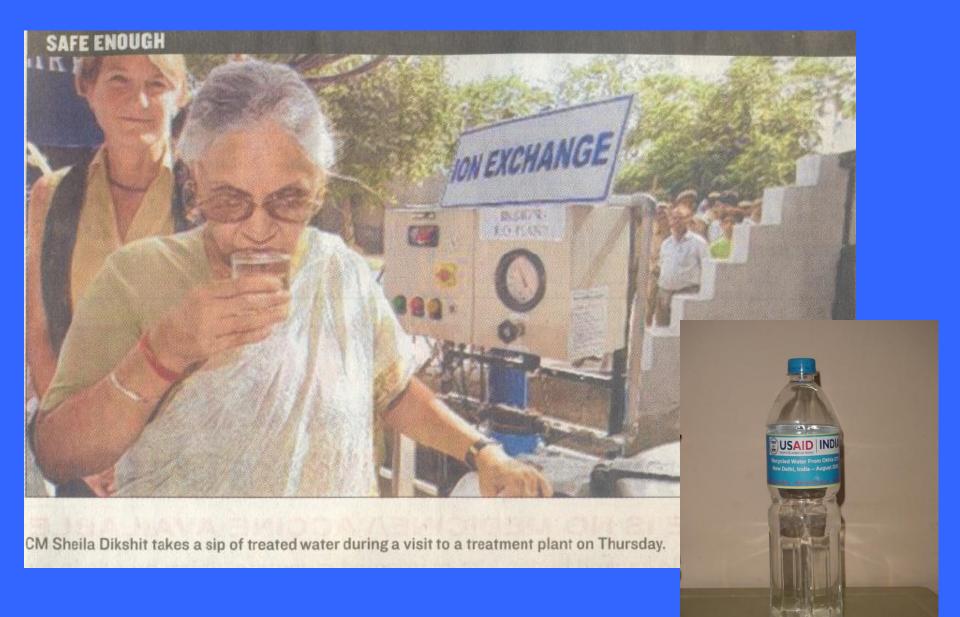
- Situation analysis and needs assessment
- Establish a mechanism for policy dialogue
- Obtain political endorsement
- Engage in an adequately resourced policy dialogue
- Ensure policy changes are legitimized through Parliament and/or decreed by the Prime Minister's Office

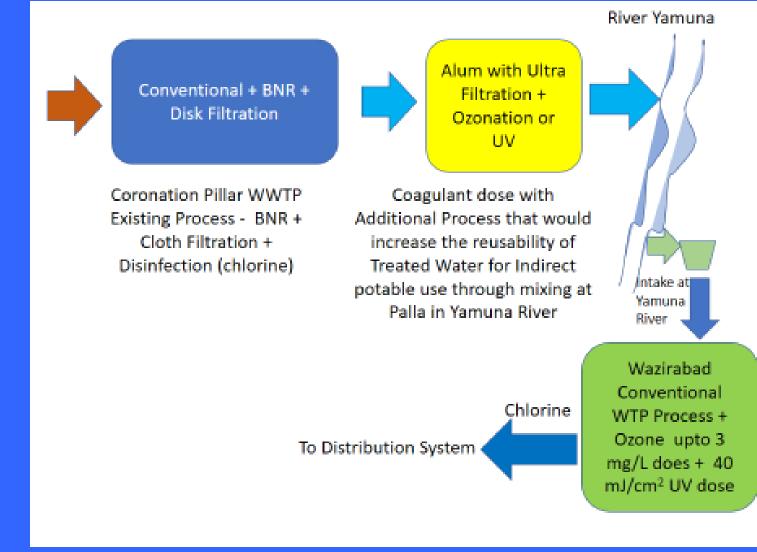
Institutional Arrangements:

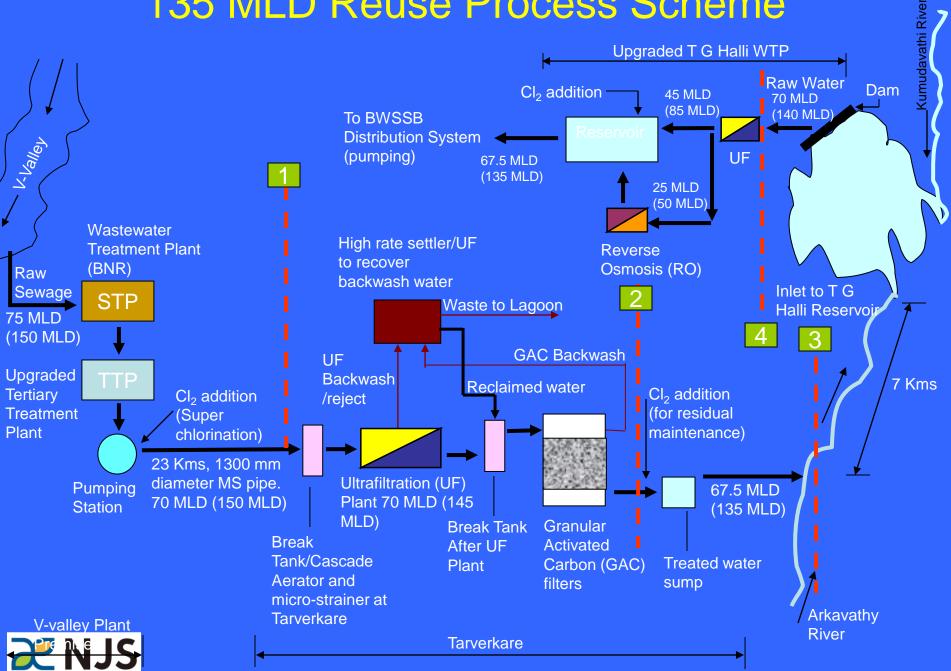
- Agreed mechanisms for coordination and resource sharing between sectors
- Identification of roles and responsibilities
- Incentive: partial inputs lead to credit for 100% outcome
- through specific Memoranda of Understanding between sectors
- through existing intersectoral mechanisms
- by operating at lower levels of governance

How would the WICER assessment tool work?




Color-coded results – is the Project WICER?

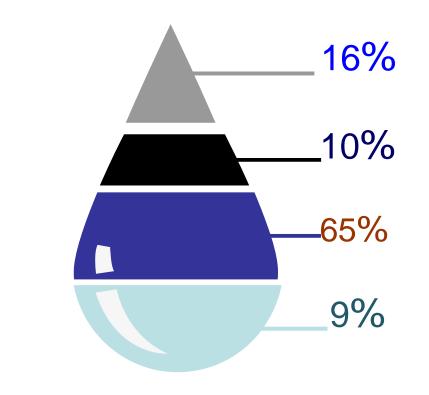

MBR & RO Pilot Performance



Current Thinking of Delhi Jal Board for Augmentation of its source water – Yamuna River, through High Quality treated wastewater from Coronation plant and other WWTPs

135 MLD Reuse Process Scheme

Bangalore Pilot Experience



Average values ov	Average values over a 12 month period Pilot works at V-valley Plant in Bangalore					
Parameter	effluent from V- Valley Plant	Tertiary Treatment Plant output	Arkavathy River 7 Kms before meeting T.G. Halli Reservoir			
BOD mg/L	22	2	12			
COD mg/L	65	12	27			
Sulfate mg/L	24.7	8	86.18			
Magnessium	28	19	62.5			
Phosphaste mg/L	1.8	0.4	2.8			
Ammonia mg/L	25	2	12			
TDS mg/L	450	228	320			
Fecal Coliforms/ 100 mL	> 1600	ND	> 1600			
Ecoli/100 mL	>400	ND	>600			
ZNJS	2NJS					

Chennai Water Supply Sources

Desalination

200 MLD of treated sea water is supplied on a daily basis

Recycled Waste Water

Industries, Power plants, Landscaping, urban forestry, Sewer Maintenance

Reservoirs 5 Reservoirs with a combined capacity of 12.5 Tmcft

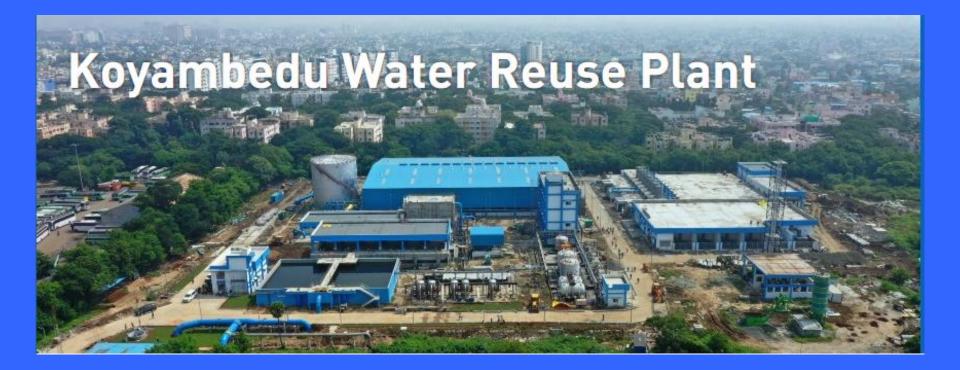
Ground water Well Fields, Agricultural Wells, Bore wells

Source: CMWSSB - 2020 & Dr. Joseph Ravikumar, WB

- Learning and improving on indirect potable reuse plant operational at IIT, Chennai
- Pilot two plants of direct of 10 MLD capacity designed with assistance of IIT, Chennai under construction and thereafter scale to 260 MLD

Direct Potable Reuse

Public Acceptance



- Have to Create Credibility & Trust
- Analysis of Wastewater Effluent. Compared to Drinking Water Standards
- Total Transparency with the Public
- Engaged Medical & Academic Communities
- Engage Business Leaders

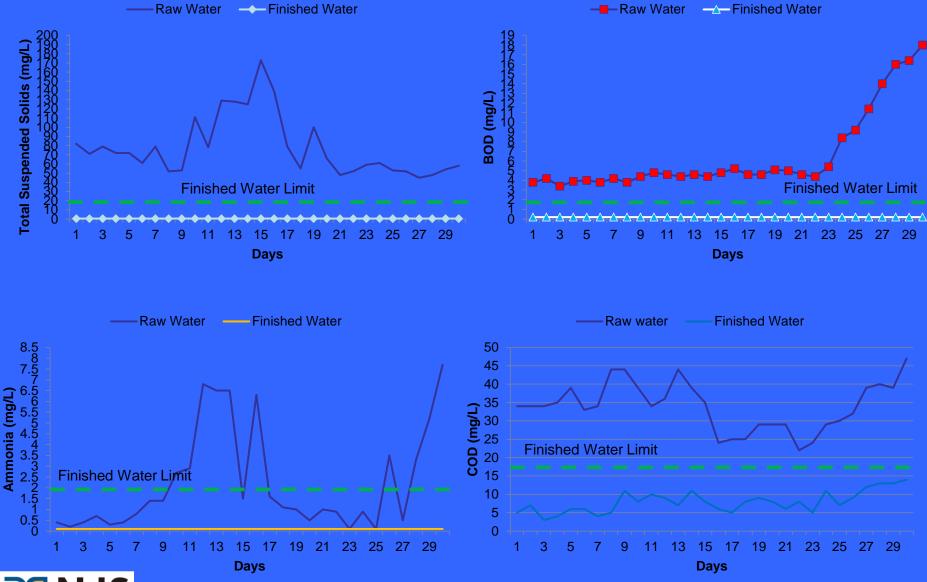
CMWSSB – 45,000 m3/day

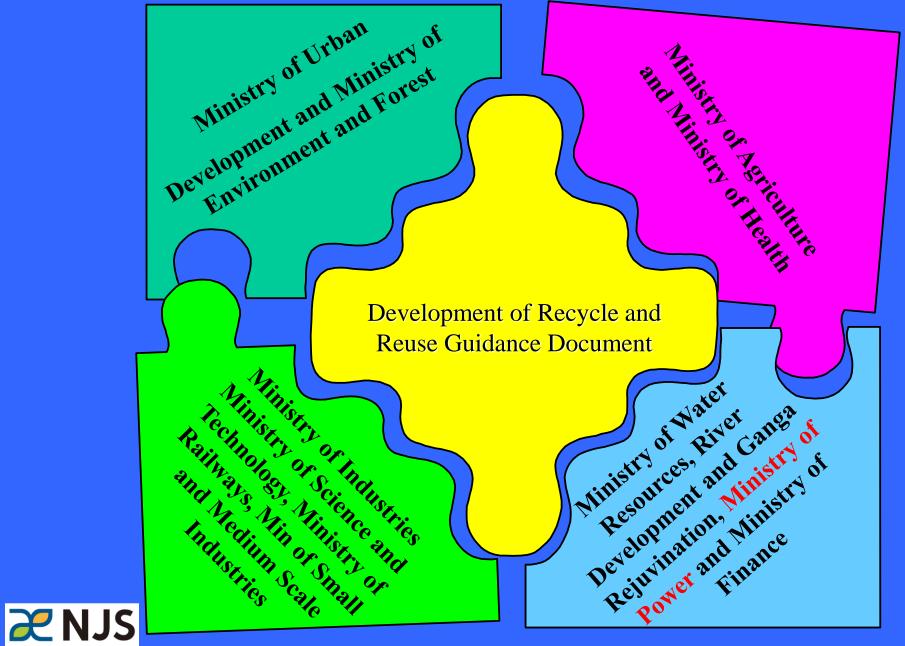
Adapted from Wabag, Chennai.

130MLD Sewage Treatment Plant at Bhandewadi


Sewage Treatment Plant at RCF, Chembur

30MLD STP at Welspun, Anjar





Secondary Sewage quality is treated to potable grade – 144 MLD – Agra

ZNJS

Inter-Ministry, Agency Cooperation

ZNJS

Statement of Support for Water Reclamation (NAGPUR REGION)

Nagpur Municipal Corporation (NMC), Urban Development Department, Water Supply & Sanitation Department, Environment Department, Water Resources Department, Government of Maharashtra (GoM) adopt the following joint statement of support for water reclamation

Whereas, water reuse is defined as the beneficial use of treated wastewater for non-potable use as power plants. Industrial Cooling, Washing, Irrigation, Landscaping, Gardening, Recreation, Construction and other uses

Whereas, the NMC to make water reuse an important element of Master Plan for Nagpur Water Supply

Whereas, NMC & GoM discourage to use potable water for non-potable application by institutions, wherever the reclaimed water is available for reuse

Whereas, amount of wastewater generation in Nagpur to increase from 380 Mld per year in 2005 to over 747 Mld in 2031

Whereas, the demand assessment survey 2005 reported that water reuse potential in greater Nagpur region is appx. 245 Mkd by 2011 and that the major constraints to achieving these levels of reuse appear to be funding, institutional and regulatory disincentives, the permitting process, and public acceptance; and

Whereas, a world wide extensive experience with water reclamation provides reasonable assurance that the potential public health risk associated with water reclamation in Nagpur are minimal, provided all regulations pertaining to water quality, monitoring, reporting and reliability are adhere to; and

Whereas, NMC & GoM agencies to frame the water reuse law and regulations to be fully protective of human health and require a specific level of water quality and treatment corresponding to each beneficial use of reclaimed water; and

Whereas, NMC & GoM agencies to setup the mechanism for monitoring and reliability requirements to further assure that use of reclaimed water is safe; and

Now therefore, be it resolved on Wednesday the 14th day of December, 2005, the undersigned agencies support the pursuit and development of State and local water reclamation policies that will reduce constraints and promote water reclamation. Specifically, the agencies will work to overcome and reduce institutional and regulatory disincentives and funding constraints and to promote public acceptance of water reclamation. The agencies will co-operate to develop specific policies and resource commitments that will enable the Nagpur Municipal Corporation to meet the water reclamation goals and to help satisfy the greater Nagpur region overall water need.

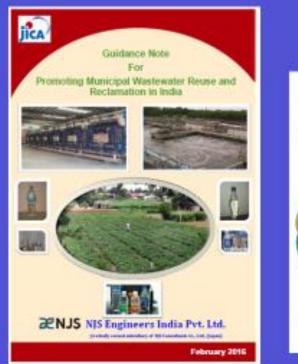
Principal Secretary Principal Secretar Principal Secretary Principal Secretary Urban Development Dept. Water Supply & Sanitation Dect. Environment Dept Water Resources Dec Gov! of Maharashtra Govt of Maharashtra Gout of Maharashtr Govt of Maharashtra Municipal Commissioner Nagour Municiper Corporation, Nagou

Water Reuse Guidelines and Policy Recommendations for Nagpur Region

Draft Version 1.0 (2/08/06)

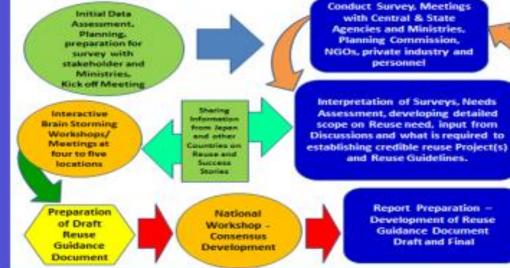
February 8, 2006

Prepared Under:


Task 6. Site Based Support To Improve Urban Energy/Water Accessibility, Delivery Efficient Use, and Waste Management

Prepared By:

USAID/India Water and Energy Nexus Project Task 6 Team

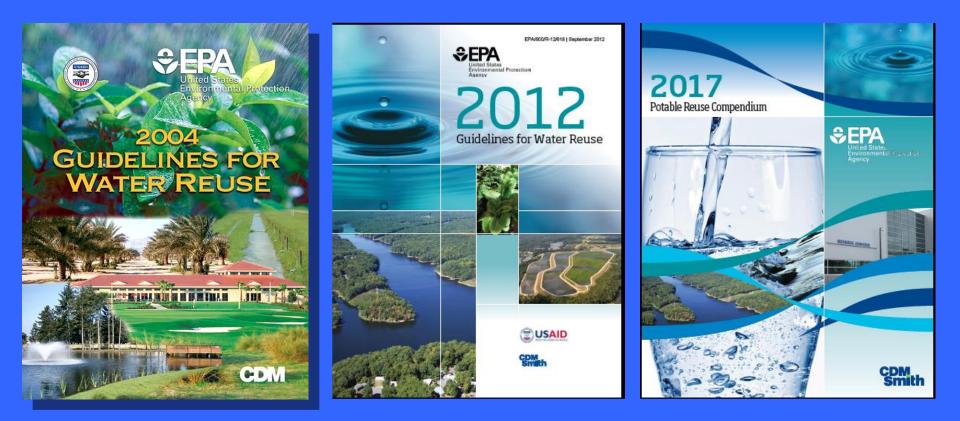


Development of Reuse Guidance Document

NJSEI/NJS Team's Proposed Work Plan

Ministry of Jal Shakti Department of Water Resources, River Development & Ganga Rejuvenation National Mission for Clean Ganga

National Framework on the Safe Reuse of Treated Water



EUROPEAN UNION

Appendix E – International case Studies

E-47	India-Bangalore	V Valley Integrated Water Resource Management: the Bangalore Experience of Indirect Potable Reuse	Uday G. Kelkar, PhD, P.E., BCEE and Milind Wable, PhD, P.E. (NJS Consultants Co. Ltd.); and Arun Shukla (NJS Engineers India Pvt. Ltd.)
E-51	India-Nagpur	City of Nagpur and MSPGCL Reuse Project	Uday G. Kelkar, PhD, P.E., BCEE (NJS Consultants Co. Ltd) and Kalyanaraman Balakrishnan (United Tech Corporation)

Thank You

Contact Information Dr. Uday G. Kelkar, P.E., BCEE Cell: +91-9822401962

> Ajit Savadi Cell:+91-9727764800

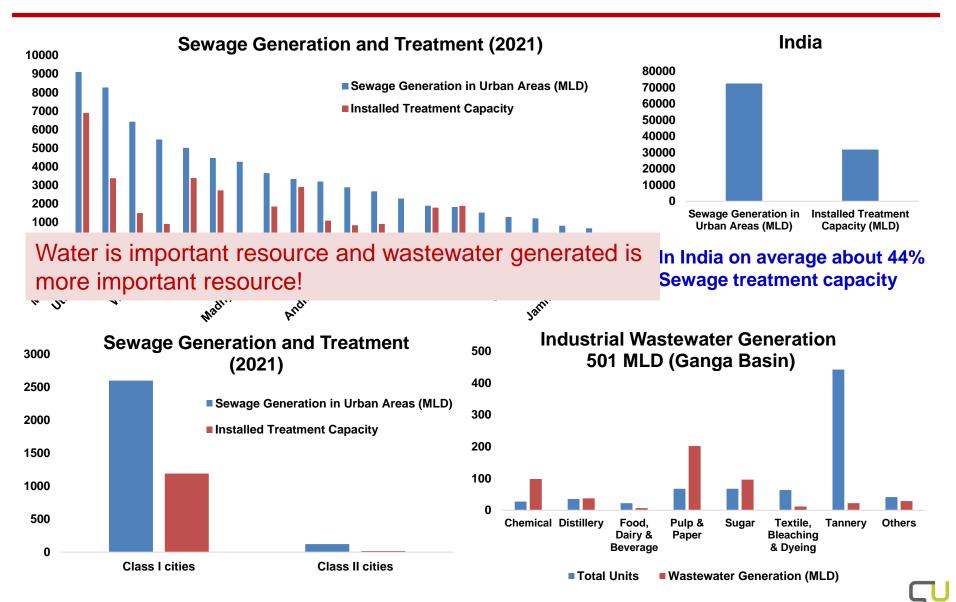
<u>uday@njsei.com</u> <u>Ajit.Savadi@njsei.com</u>

FIT FOR PURPOSE TECHNOLOGIES FOR RECYCLE & REUSE OF WASTEWATER

Nature-Based or Mechanized Wastewater Treatment Technologies: Selection for 'Fit for Purpose' Application

Dr. Pradip Kalbar

Associate Professor Centre for Urban Science and Engineering (CUSE) Indian Institute of Technology Bombay Email: <u>kalbar@iitb.ac.in</u> Tel. No. 022 2576 9330

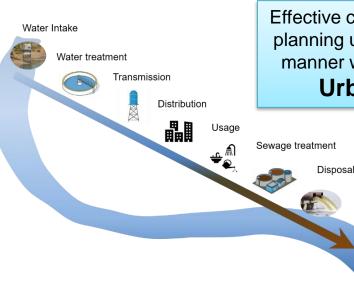

11th Jan 2023

Centre for Urban Science and Engineering Improving Quality of Urban Life

Indian Institute of Technology Bombay

Background

http://www.sulabhenvis.nic.in/database/stst_wastewater_2090.aspx

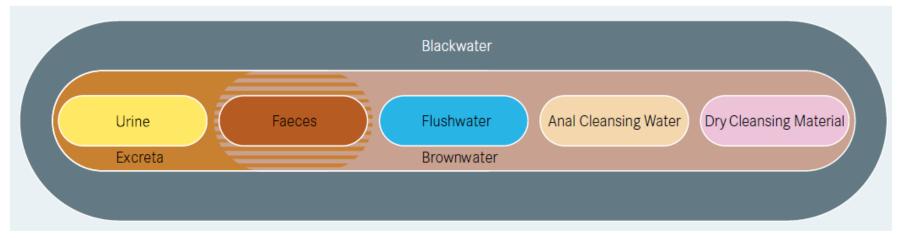

Urban Water Management (UWM)

Urban Water Infrastructure:

- Source
- Intake
- Water treatment
- Transmission and distribution
- Water consumption
- Sewage conveyance
- Sewage treatment
- Disposal

Stakeholders:

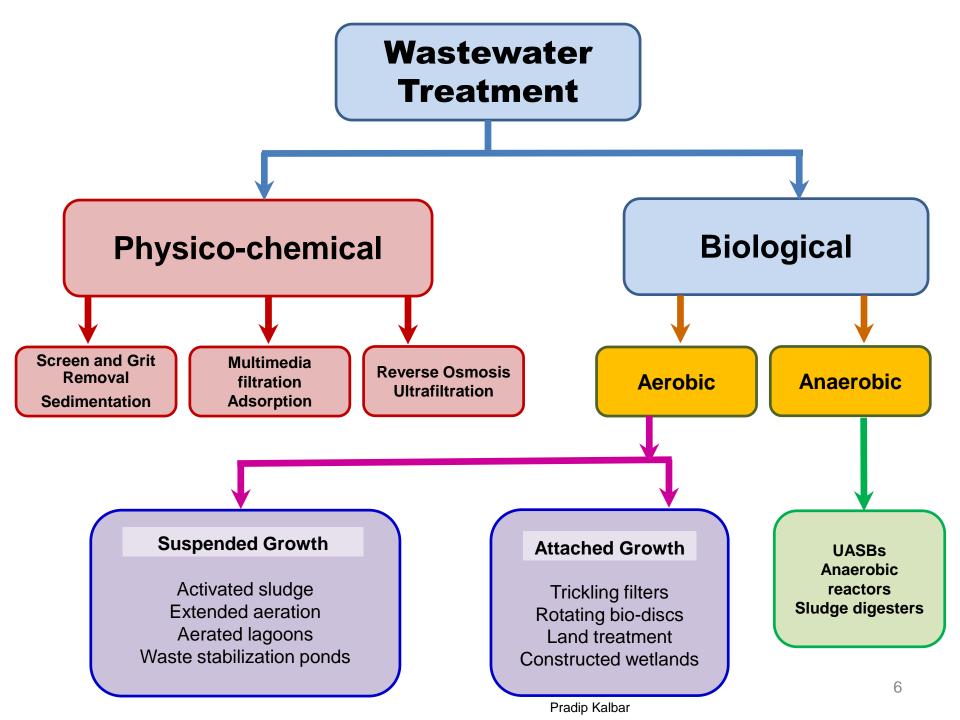
- Planners
- Consultants
- Research organizations
- **Pollution Control Boards**
- Public utilities
- **Politicians**
- Users
- Operators

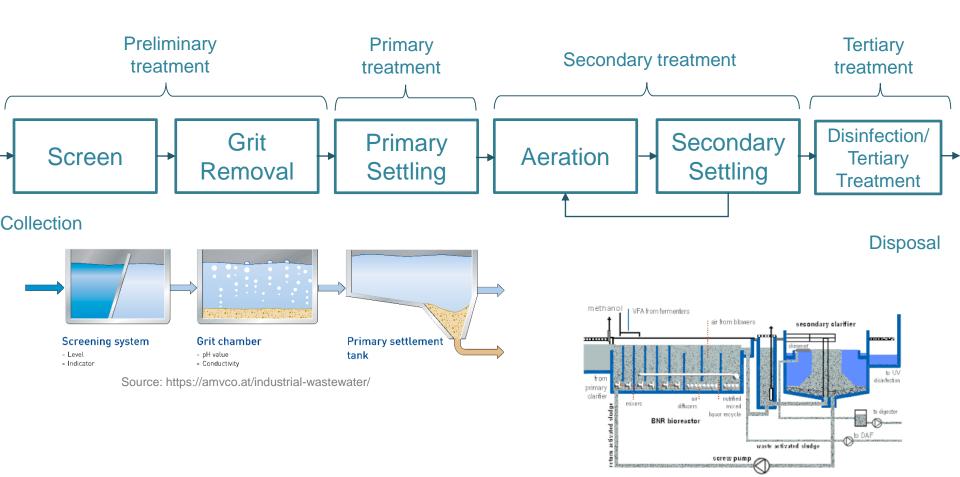

Effective culmination of relevant stakeholders in planning urban water infrastructure in a holistic manner will result in sustainable and resilient

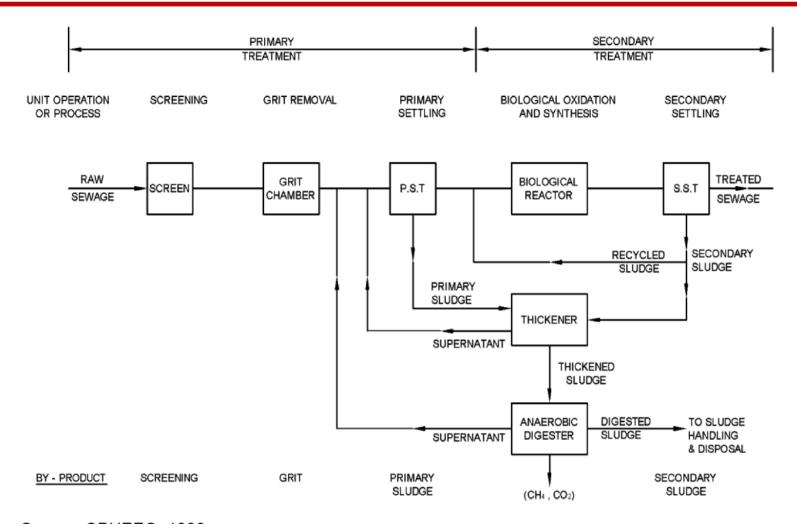
Urban Water Management

Disposal

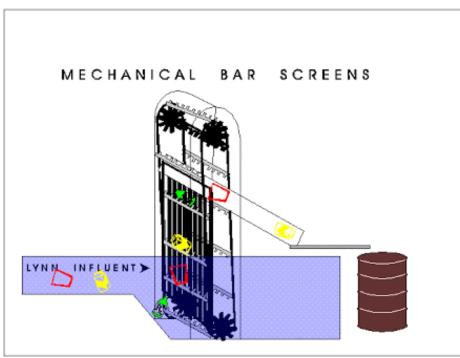
Terminologies


- **Blackwater** is the mixture of Urine, Faeces and Flushwater along with Anal Cleansing Water (if water is used for cleansing) and/or Dry Cleansing Materials Blackwater contains the pathogens of Faeces and the nutrients of Urine that are diluted in the Flushwater.
- **Brownwater** is the mixture of Faeces and Flushwater, and does not contain Urine. It is generated by Urine-Diverting Flush Toilets
- **Greywater** is the total volume of water generated from washing food, clothes and dishware, as well as from bathing, but not from toilets.

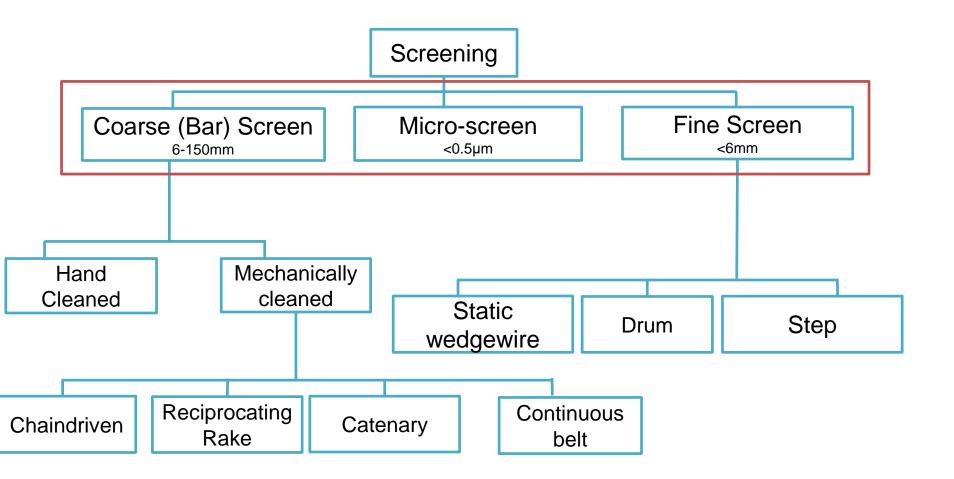

(Source: TILLEY, E.; ULRICH, L.; LUETHI, C.; REYMOND, P.; ZURBRUEGG, C. (2014): Compendium of Sanitation Systems and Technologies) Pradip Kalbar



Conventional Wastewater Treatment Flowsheet

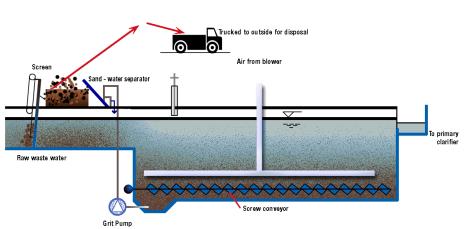


Conventional Sewage Treatment Plant

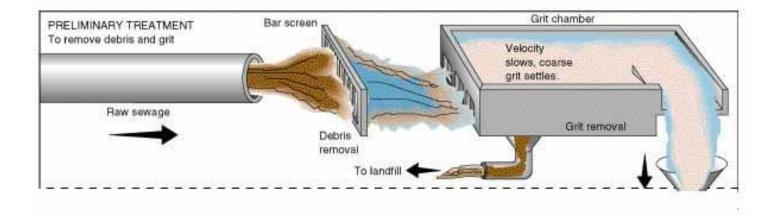

Screen

- The first unit operation
- Used to screen solids/large size material present in wastewater
- Generally uniform in size
- Provided to avoid damage to further units

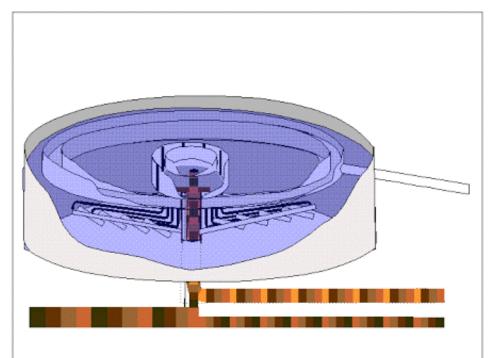
Classification of Screen


Screen

Grit Chamber

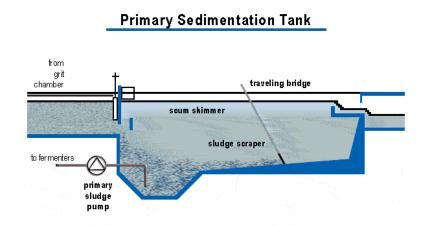

- Removal of inorganic particles silt, sand, etc.
- Having high specific gravity
- Settling under gravitational force
- Particles which do not decompose readily
- Average size of grit is 0.2mm dia and specific gravity 2.3-2.65

Grit Chamber


- It is provided to
 - Protect other mechanical units
 - Prevent clogging of pipes
- Disposal of sludge landfill

Source: https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.slideshare.net%2FErYaserSaleemSiddiqu%2Funit-4-70546952&psig=AOvVaw3IT4LBID6O3iDrFob_UeaR&ust=1614876452297000&source=images&cd=vfe&ved=2ahUKEwj6-9DbyZTvAhUiJLcAHZSsCK8Qr4kDegUIARCR

Primary Clarifier

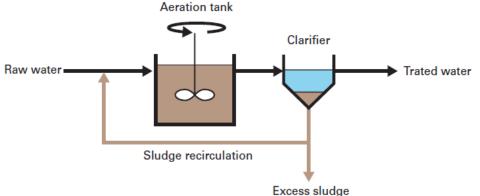

- The objective of primary sedimentation is to remove readily settleable solids and floating organic material (called scum) to reduce the suspended solids load for subsequent treatment processes
- Detention period 90 to 150 min
- Organic suspended solids above 0.1 mm

Primary Clarifier

- An efficiently designed primary sedimentation tank can remove
 - 50-70% solids
 - 25-40% BOD
- Can be rectangular or circular in shape

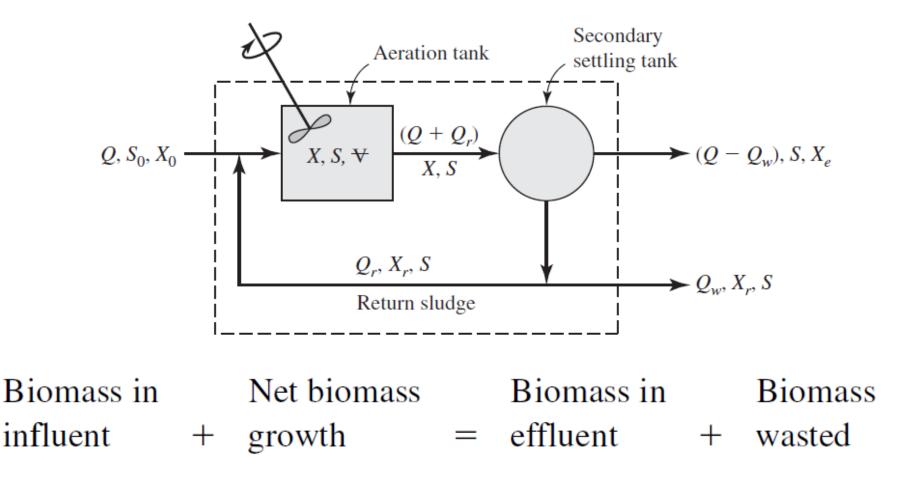
Primary Clarifier

Source:


https://www.google.com/url?sa=i&url=http%3A%2F%2Fwww.paramountlimited.com%2FPrimary_Clarifier.html&psig=AOvVaw3VJ5vehhEnAK8aqD6INGGm&ust=1616393 39000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCMiYh47fw08CFQAAAAAdAAAAABAK

Overview of Mechanized Treatment Technologies

Activated Sludge Process (ASP)


- An aerobic biological suspended growth process
- Wastewater and biological sludge are mixed and aerated
- Abundance of oxygen
- The mixed liquor obtained in aerator is allowed to settle in secondary aerator
- The settled sludge is called as Activated Sludge
- A part of activated sludge is returned back to aeration process

Source: https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.suezwaterhandbook.com%2Fprocesses-and-technologies%2Fbiologicalprocesses%2Fsuspended-growth-cultures%2Factivated-sludge-reactor-type-and-

configurations&psig=AOvVaw0CBlbxDzFasUTv7QdIhYYc&ust=1616335434112000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCNDx4-uEv-8CFQAAAAAAAAAAAAAAAAAAAA

Design Principles for ASP

(Source: Davis, M. L. (2010). Water and wastewater engineering. McGraw-Hill.)

Sludge Return

- If it is assumed that sedimentation of suspended solids in the laboratory is similar to that in sedimentation tank, then X_R = 10⁶/SVI (mg/L)
- Values of SVI between 100 and 150 ml/g indicate good settling of suspended solids
- X_R value may not be taken more than 10,000 g/cum (1%) unless separate thickeners are provided to concentrate the settled solids or secondary sedimentation tank is designed to yield a higher value

Food-to-Microorganism Ratio (F/M)

 Very useful parameter for monitoring WWTPs

$$F/M = \frac{QS_o}{VX} \qquad F/M = \frac{[BOD \text{ of wastewater } (g \text{ m}^{-3})][Influent flow rate (m^3 d^{-1})]}{[Reactor volume (m^3)][Reactor biomass (g m^{-3})]}$$

where Q = wastewater flow rate into the aeration tank, m³/d

 S_o = influent readily biodegradable soluble COD (rbsCOD), mg/L

- Ψ = volume of aeration tank, m³
- X = microorganism concentration (mixed-liquor volatile suspended solids or MLVSS) in the aeration tank, mg/L

The units of F/M are

$$\frac{\text{mg BOD}_5 / \text{d}}{\text{mg MLVSS}} = \frac{\text{mg}}{\text{mg} \cdot \text{d}}$$

Oxygen Demand

- Oxygen is used in reactions where substrate is degraded to produce the high-energy compounds required for cell synthesis and respiration.
- Oxygen used = bCOD removed COD of waste sludge

 $C_5H_7NO_2 + 5O_2 \rightleftharpoons 5CO_2 + 2H_2O + NH_3 + energy$

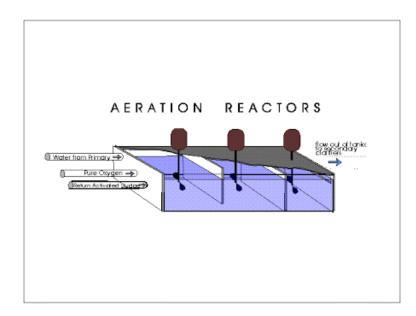
$$\frac{5(32)}{113} = 1.42$$

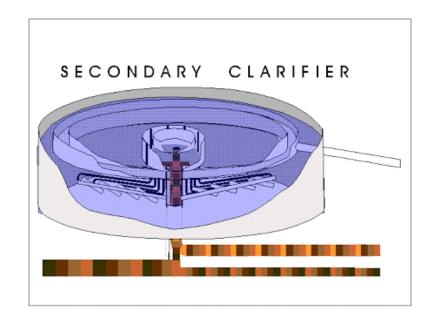
• Mass of oxygen:

$$M_{O_2} = Q(S_o - S)(10^{-3} \text{ kg/g}) - 1.42 (P_x)$$

where M_{O_2} = mass of oxygen, kg/d

$$Q$$
 = wastewater flow rate into the aeration tank, m³/d


$$S_o = \text{influent bCOD, g/m}^3$$

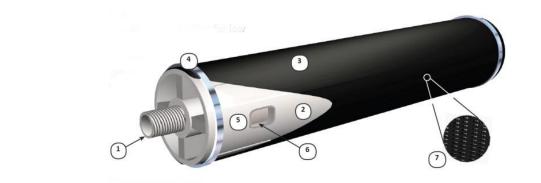

 $S = \text{effluent bCOD, g/m}^3$

$$P_x$$
 = waste activated sludge produced, kg/d

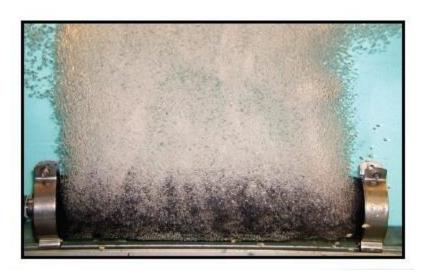
Aerator and Secondary Clarifier

- ASP is one of the most commonly used technology for sewage treatment
- Modifications to conventional ASP are
 - Oxidation ditch
 - SBR

Aerator and Secondary Clarifier



Source 1: https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.watertechonline.com%2Fwastewater%2Farticle%2F15550311%2Faerated-activated-sludge-basics&psig=AOvVaw2_ecmHdJUa_WBU-

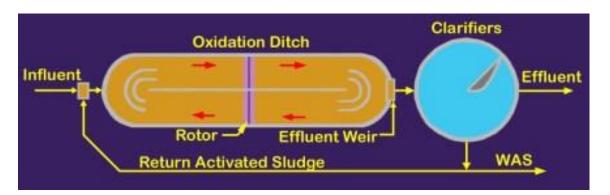

JY0NYJV&ust=1616394193883000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCNCN7OHfwO8CFQAAAAAdAAAAAAAAA Source 2: https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.simivalley.org%2Fdepartments%2Fpublic-works%2Fsanitation-services%2Fsecondaryclarifiers&psig=AOvVaw06OeB9Ph08mwVBbTECIt2Q&ust=1616393979190000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCJiyh__ewO8CFQAAAAAdAAAA ABAD

Diffuse Aerator

Flexair® Fine Bubble EPDM Tube Diffusers from EDI®

Mechanical aerators

(Source: https://www.corgin.co.uk/aeration-mixing/aerators/vertex-surface-aerator)



Oxidation Ditch

- The oxidation ditch is a modified form of activated sludge process
- Also known as "extended aeration process"
- The ditch consists of a long continuous channel oval in shape
- Longer solid retention time helps in removal of organic matter

Source: https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.slideshare.net%2FHaddies%2Fwater-pollution-and-its-control-throughbiotechnology&psig=AOvVaw2QDKJHSZAzs-VINr-

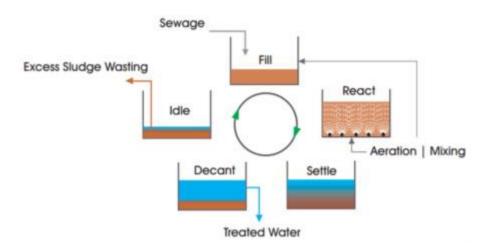
Oxidation Ditch

Source 3:

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DAKvRu88YhZ8&psig=AOvVaw1iK4lncw7S_FSTYFz9ITzo&ust=16163955898 99000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCPiv_frkw08CFQAAAAAdAAAABAD

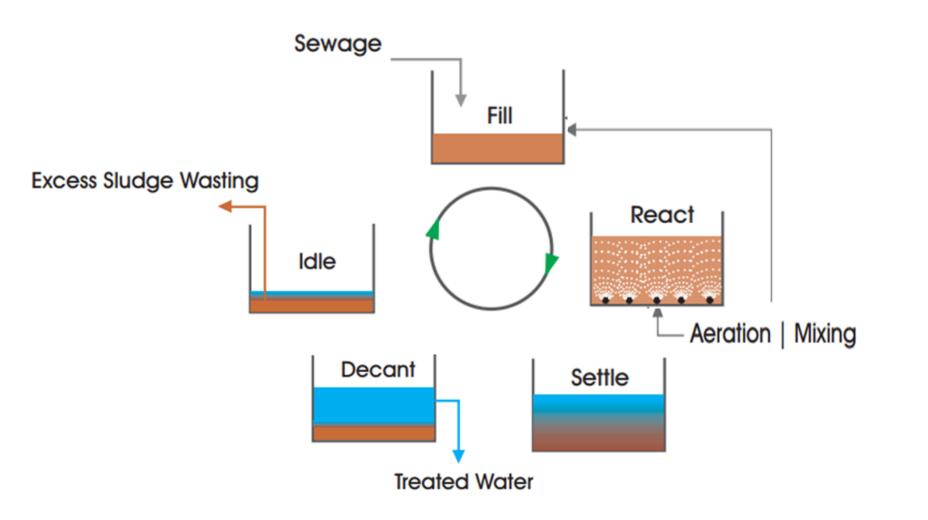
Oxidation Ditch

Advantages


- Highly reliable and simple process
- Adaptable to nutrient removal
- High quality effluent possible
- Well stabilized sludge, low bio-solids production

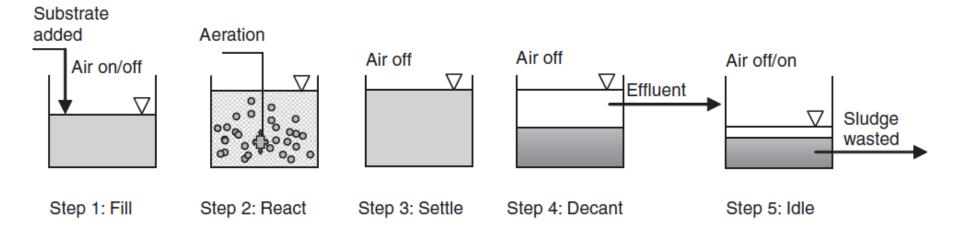
Disadvantages

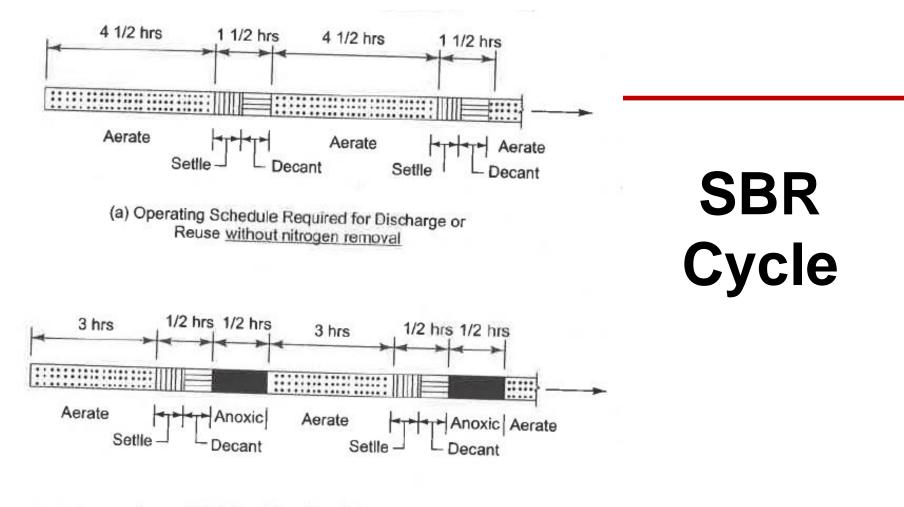
- Large structure greater space requirement
- Requires comparatively
 more aeration energy
- Plant capacity expansion is more difficult



- Sequencing Batch Reactor (SBR) is the fill-and-draw type Activated sludge process
- It is the process in which, wastewater is filled in a batch reactor, treated to remove pollutants, and then discharged
- According to a 1999 U.S. EPA report, an SBR is no more than an activated-sludge plant that operates in time rather than space.

Source: https://knowhowtogmo.wordpress.com/2011/02/01/biological-phosphorus-removal-from-waste-water/





Source 1: https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.xylem.com%2Fen-us%2Fproducts-services%2Ftreatment-products-systems%2Fbiological-treatment-processes%2Fsequential-batch-reactor-sbr%2Ficeas-advanced-sbr-

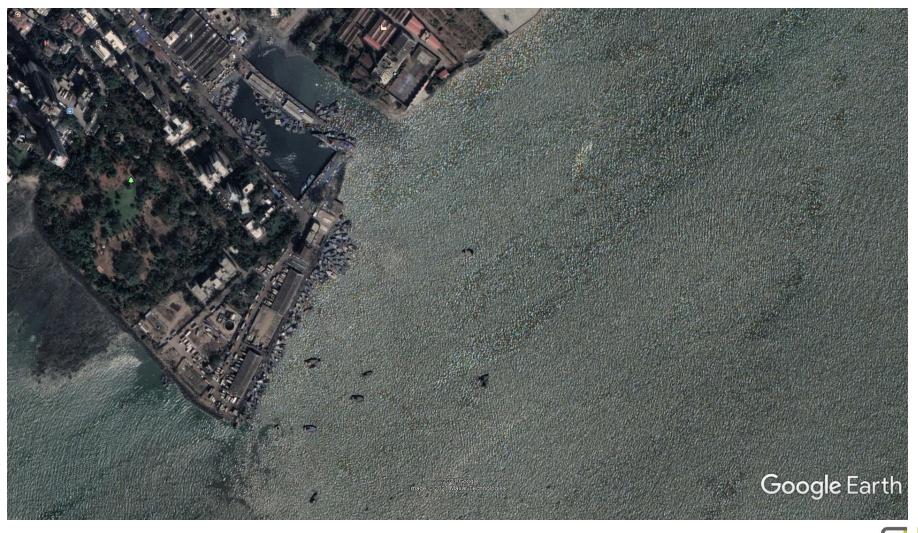
(b) Modified Operating Schedule Where Denitrification is Desired

(Source: Arceivala, S. J., & Asolekar, S. R. (2006). *Wastewater treatment for pollution control and reuse*. Tata McGraw-Hill Education.)

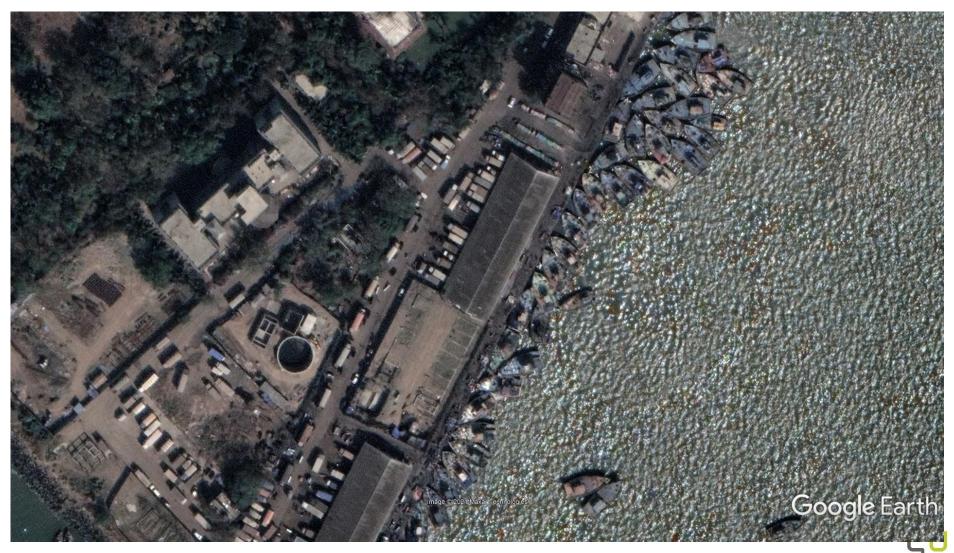
Advantages

- Minimum Footprint
- Flexible and easy to operate
- Equalization, Aeration and Clarification in same tank
- Cost savings
- Separate tanks for clarification not required

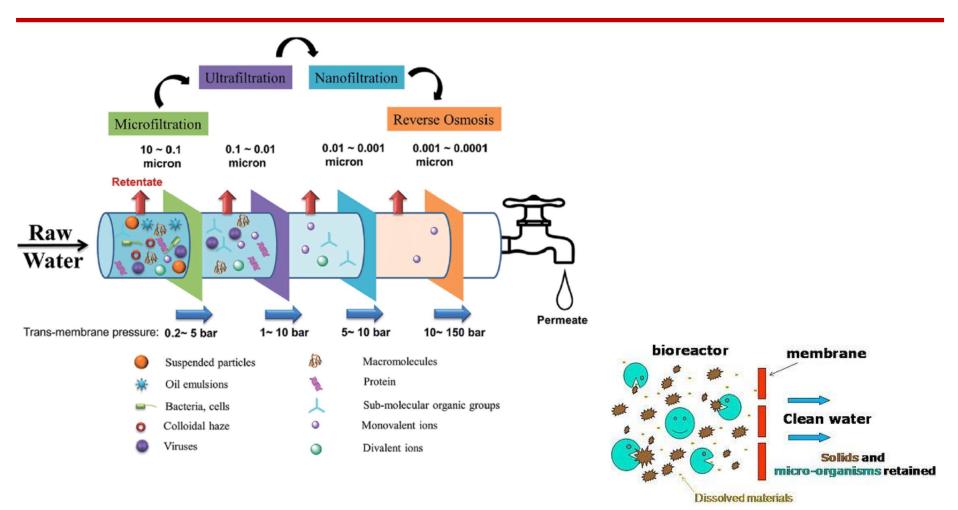
Disadvantages


- Higher level of Sophistication
- Higher level of Maintenance
- Chances of withdrawal of sludge during decant phase

Nagpur (STP)



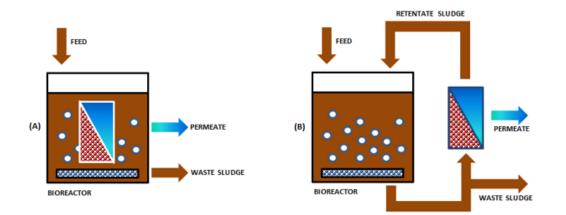
Colaba WWTF



Colaba WWTF

C

Membrane Treatment


Source 1: https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.researchgate.net%2Ffigure%2FPressure-driven-membrane-processes-for-water-treatment-technologies-showing-

Source 2:

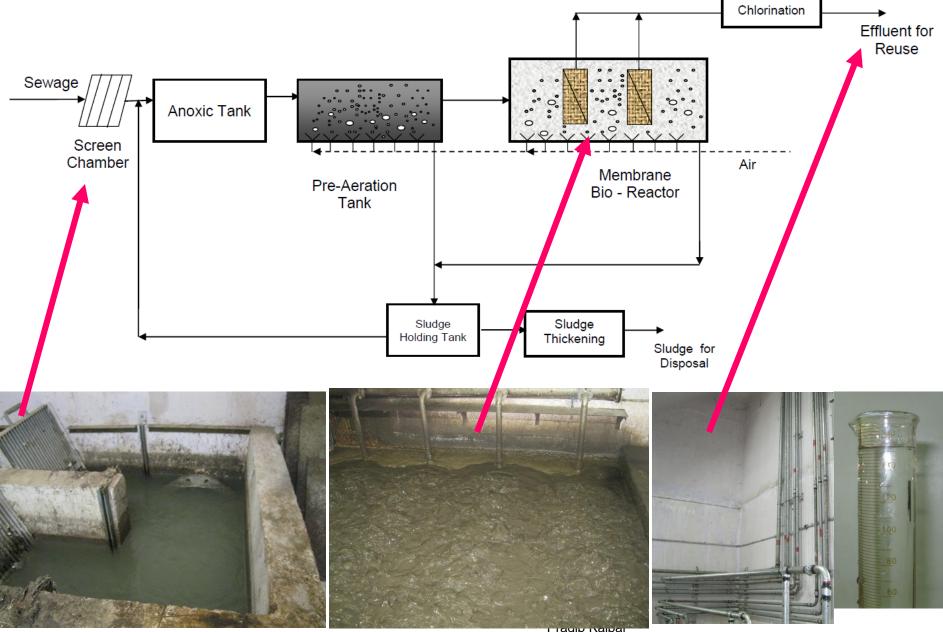
https://www.google.com/url?sa=i&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FMembrane_bioreactor&psig=AOvVaw0zV680M5akHfRzAowuIVue&ust=1 616340398911000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCOiw_6-Xv-8CFQAAAAAAAAAAAAAAAAA

Membrane Bioreactor (MBR)

- MBR technology is the combination of a membrane filtration process with a suspended growth bioreactor
- Can be operated in two configurations
 - Submerged and
 - Side stream
- Introduced in late 1960s
- Original process was introduced by Dorr-Olivier Inc.

Source: https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.lenntech.com%2Fprocesses%2Fmbrintroduction.htm&psig=AOvVaw3vL5zk7HESeR7NUFvqzKNy&ust=1616340582419000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCKCM_4mYv-8CFQAAAAAdAAAAABAD

Membrane Bioreactor



Source 1: https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.hydrobluemem.com%2Fproduct%2Fmbr-bio-reactor-for-wastewatertreatment%2F&psig=AOvVaw0n1m6wtWy7cxygr7rb7fr-&ust=1616395626497000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCPDv-IzIwO8CFQAAAAAAAAAAAAAAAAA

Source 2: https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.indiamart.com%2Fproddetail%2Fmbr-sewage-treatment-plant-14395367962.html&psig=AOvVaw0n1m6wtWy7cxygr7rb7fr-&ust=1616395626497000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCPDv-IzIwO8CFQAAAAAAAAAAAAAAAAAA

Process Flow Diagram of Building Scale STP based on MBR

ι τασιρ παιρα

Membrane Bioreactor

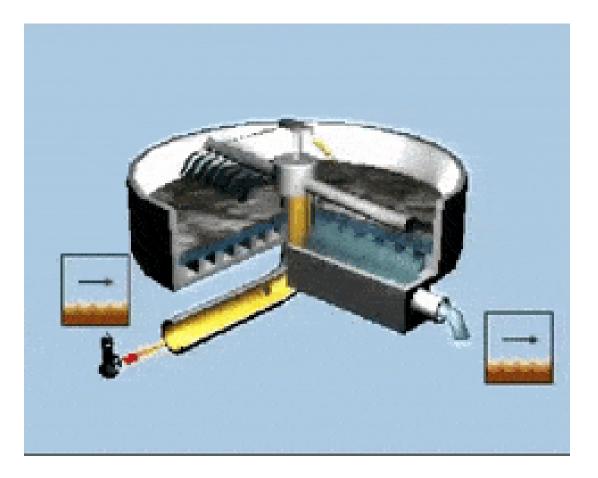
Advantages

- High quality effluent
- Potential for N removal
- Compact in size, less space required
- Lesser sludge because of longer solid retention time
- Higher volumetric loading rates and thus shorter hydraulic retention time

Disadvantages

- Higher capital and operation cost
- Membrane fouling
- Membrane costs
- Technical knowledge and care required during construction

Trickling Filter


Recirculation of Cleaned Water

Pre-Cleaned Influent Media partially covered with water Recirculated Water Return Pump

- It is an attached growth treatment process
- The wastewater is distributed over media
- Upon media, biological film is formed
- The film is made up of living organisms that help in breaking down the organic matter

Trickling Filter

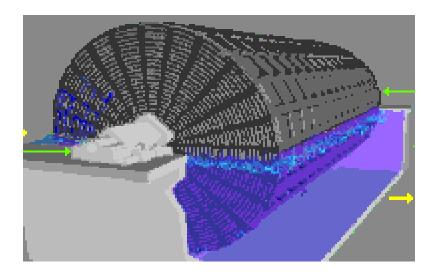
Trickling Filter

Source 1: https://www.google.com/url?sa=i&url=https%3A%2F%2Fhydroflux.com.fj%2Ftrickling-filter-package-sewage-treatment-plant-wastewater-hydroflux-epco-australiagallery-8%2F&psig=AOvVaw0FMAe6TG4djq441H64f9m1&ust=1616395822021000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCJCNsnlwO8CFQAAAAAdAAAABAD Source 2: https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.hewitech.de%2Fen%2Fproducts%2Fwater-

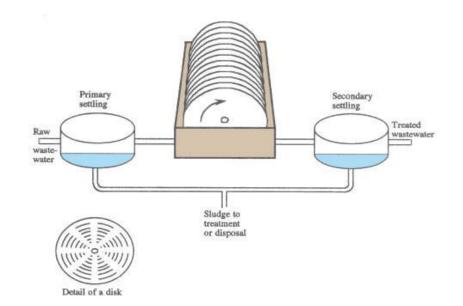
purification%2Ftricklingfilter%2F&psig=AOvVaw0FMAe6TG4djq441H64f9m1&ust=1616395822021000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCJCNsnlw08CFQAAAAAdAAAAAAAAAA

Advantages and Disadvantages Trickling Filter

Advantages


- Simple, reliable, biological process
- Effective in treating high concentrations of organics depending on the type of medium used
- Appropriate for small- to medium-sized communities.
- Durable process elements
- Low power requirements
- Moderate level of skill and technical expertise needed

Disadvantages


- Additional treatment may be needed to meet more stringent discharge standards
- Requires regular operator attention
- Incidence of clogging is relatively high
- Flexibility and control are limited in comparison with ASP
- Odor problems

Rotating Biological Contactors (RBC)

Rotating biological contactors is a simple attached growth process which removes the soluble organic matter by its conversion to insoluble microbial cells which are easily settable

Purpose of RBCs

- Treatment of both industrial and domestic wastewaters
- For carbonaceous BOD removal
- For Nitrification

Source:

https://www.google.com/url?sa=i&url=http%3A%2F%2Fwww.aesarabia.com%2Frotatingbiological-

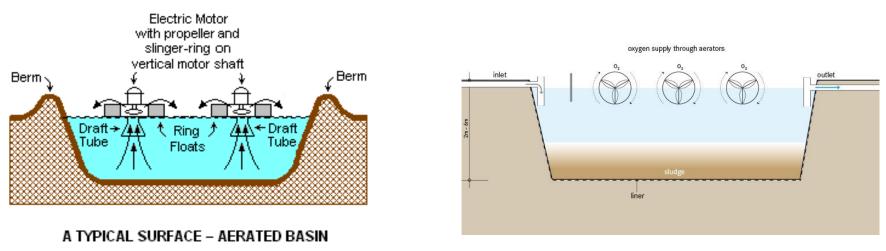
contactor%2F&psig=AOvVaw0LrcYFgAZisjBYdCdTeDE6&ust=1614877128229000&source=i mages&cd=vfe&ved=2ahUKEwihz_idzJTvAhUAIrcAHVSKA48Qr4kDegUIARDMAQ 6

Rotating Biological Contactors (RBC)

Source 1: STP at MNIT Jaipur

Source 2: https://www.google.com/url?sa=i&url=http%3A%2F%2Fm.yhenviro.com%2Fenviromental-machinery%2Fsewage-wastewater-treatment-machinery%2Fthreedimensional-structure-

9


Lagoons

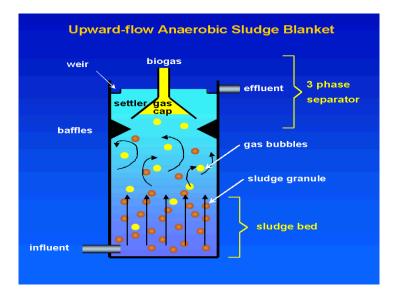
- Lagoons: Earthen basin with sloping side walls
- Based on the type of metabolism:
 - Aerobic lagoons are generally shallow, have adequate mixing to prevent stratification; may be aerated by phototrophs in day time or may be mechanically aerated
 - Facultative lagoons tend to be deeper than aerobic and have an upper aerobic zone, where phototrophs are active and a lower zone where anaerobic heterotrophic activity dominates.
 - Anaerobic Lagoons are generally deeper and depend upon anaerobic heterotrophic activity as primary treatment, with upper phototrophic zone that minimizes odour emissions

Aerated Lagoons

- Consists of a large earthen basin equipped with mechanical aerators
- Aerated lagoons are of two types depending on the microbial biomass
 - Suspended growth aerated lagoon
 - Facultative aerated lagoons

Note: The ring floats are tethered to posts on the berms.

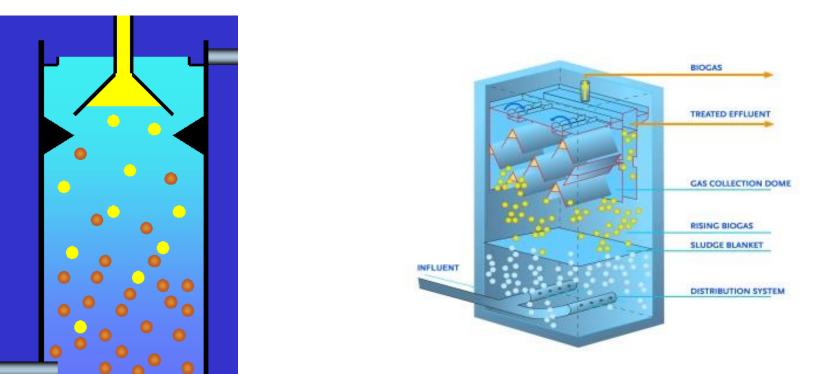
Aerated Lagoons



Source 1:

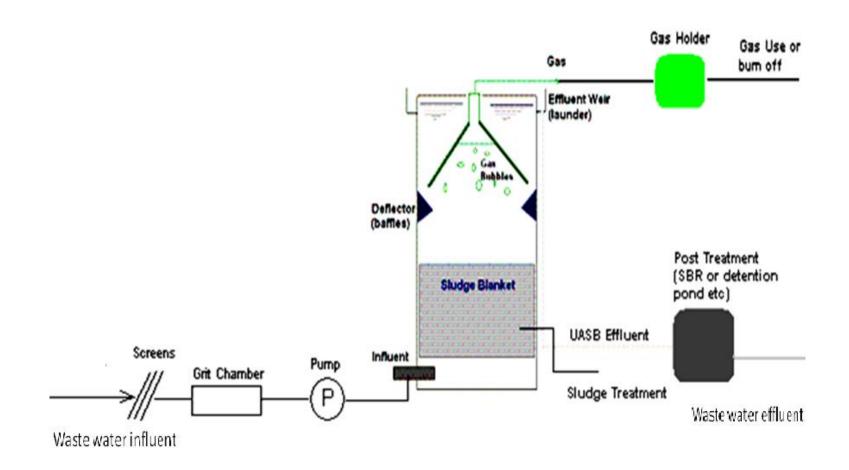
https://www.google.com/url?sa=i&url=http%3A%2F%2Fwww.lagoonsonline.com%2Fsitemap.htm&psig=AOvVaw3ZWvsDrLdVJ_cPAQcQapKf&ust=1616397272110000&sourc e=images&cd=vfe&ved=0CAIQjRxqFwoTCKDiuJ3rw08CFQAAAAAAAAAAAAAA

Upflow Anaerobic Sludge Blanket (UASB)


- It is one of the most notable developments in anaerobic treatment process technology
- A special kind of reactor for the "high rate" anaerobic treatment of wastewater
- Also known as methanogenic (methane-producing) digester

Source: https://microbewiki.kenyon.edu/index.php/Upflow_Ananerobic_Sludge_Blanket

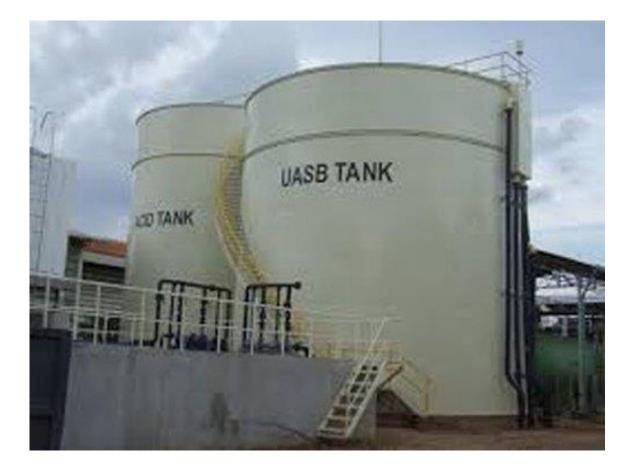
Upflow Anaerobic Sludge Blanket (UASB)



Source: https://www.iwapublishing.com/news/flow-anaerobic-sludge-blanket-reactor uasb

Source: http://enveng.blogspot.com/2005/11/upflow-anaerobic-sludge-blanket-uasb.html

Upflow Anaerobic Sludge Blanket (UASB)



Source: https://www.google.com/url?sa=i&url=http%3A%2F%2Fwastewater-

engineering.com%2Fuasb_upflow_anaerobic_sludge_blanket.htm&psig=AOvVaw04bOh7uj3TV7tk1n74rRIY&ust=1615026198232000&source=images&cd=vfe&ved=2ah wjauofI95jvAhWx0nMBHdDHCWoQjRx6BAgAEAc

P

UASB tank

Source: https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.indiamart.com%2Fproddetail%2Fup-flow-anaerobic-sludge-blanket-reactor-uasb-anaerobic-digester 22578092333.html&psig=AOvVaw0ieFlJg9mCDGc_R33WmhU&ust=1616401033869000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCNiV_J_5wO8CFQAAAAAdAAAABBH 71

Upflow Anaerobic Sludge Blanket (UASB)

Advantages

- Low energy requirement
- Less operation and maintenance cost
- Lower skill requirement for operation and supervision
- Less sludge production
- Potential for resource recovery* through generation of electricity from bio gas

Disadvantages

- The efficiency of the BOD and suspended solid removal is low as compared to the ASP
- Performance of UASB based plant is adversely affected by mixing industrial effluent that contain some toxic material or high level of sulphate
 - Corrosion of structures in & around a UASB based plant is found to be higher compared to other technology based STPs

Overview of Natural Treatment Systems

Natural Treatment Systems

- Mimic the processes taking place in nature
- Use pathways of natural ecosystems
- Affordable and sustainable solutions and are recommended for developing countries
- Occur naturally, hence slowly, at their own pace

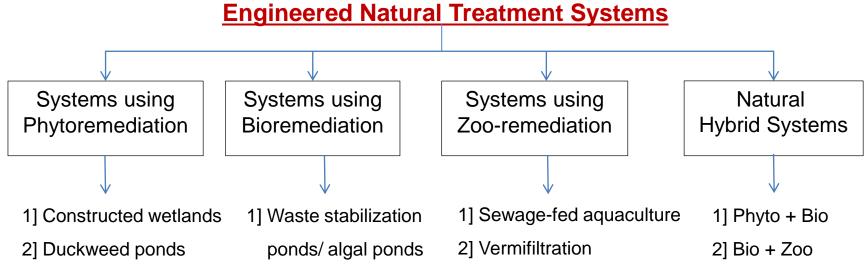
European Commission defined Nature-Based Solutions as:

Living solutions inspired by, continuously supported by and using nature, which are designed to address various societal challenges in a resource-efficient and adaptable manner and to provide simultaneously economic, social, and environmental benefits

Boano, F., Caruso, A., Costamagna, E., Ridolfi, L., Fiore, S., Demichelis, F., Galvão, A., Pisoeiro, J., Rizzo, A., & Masi, F. (2020). A review of nature based solutions for greywater treatment: Applications, hydraulic design, and environmental benefits. *Science of The Total Environment, 711*, 134731. https://doi.org/10.1016/j.scitotenv.2019.134731

East Kolkata Wetlands

- 'Ramsar Wetlands Convention' designated as wetlands having international importance
- Free sewage treatment plants for decades spread over 12500 hectares
- Comprises of 2000+ water bodies or ponds
- Out of 1400 MLD sewage generated in Kolkata, almost 910 MLD is treated in East Kolkata Wetlands (EKW)
- Source of livelihood for 74% population in the adjoining area

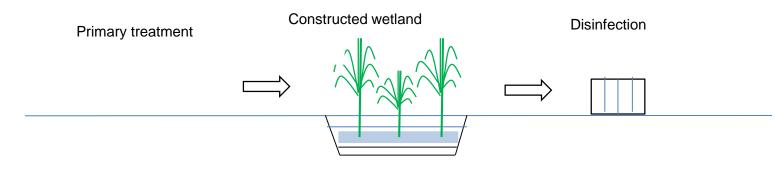


Aerial view of East Kolkata Wetlands and typical ponds

Natural Treatment Systems

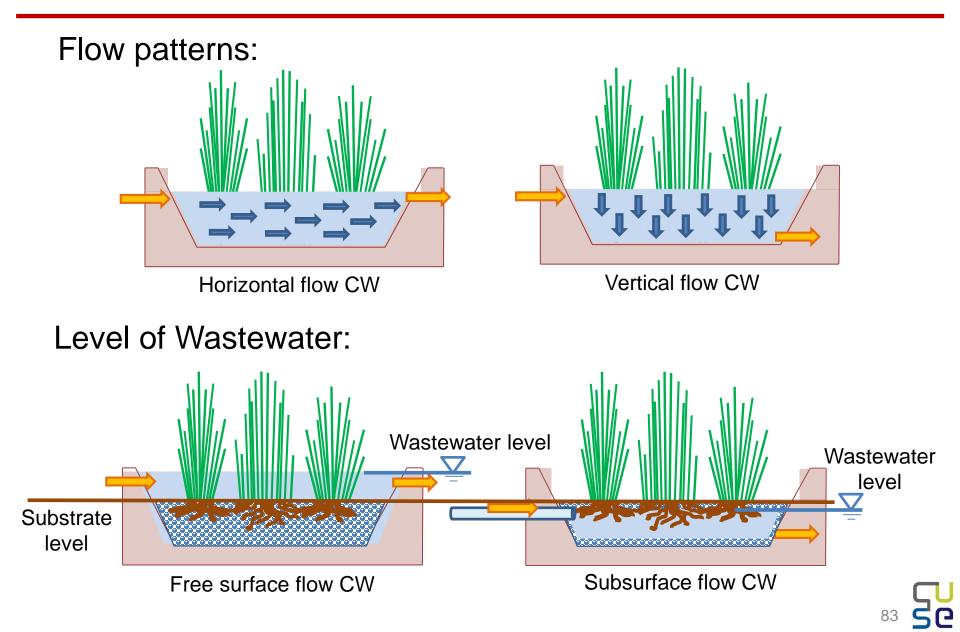
> Assimilative capacity of water bodies

3] Floating wetlands


Constructed Wetlands

Other names:

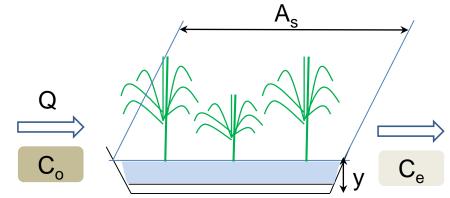
Planted soil filters, reed bed treatment systems, artificial wetlands or vegetated submerged beds


Characteristics:

- Engineered systems artificially developed to function natural processes along with coexisting microorganisms to aid wastewater treatment
- Wetland vegetation and the *microbial population* present in media are the key functional units
- Natural mechanisms assist in the removal of the contaminants present in groundwater or surface water

Configurations of Constructed Wetlands

Constructed Wetland Design


Land requirement:

$$A_{s} = \frac{Q * (\ln C_{o} - \ln C_{e})}{K_{T} * y * n}$$

Where

 A_s = wetland surface area (m²) Q = average design flow (m^3/d) C_0 = influent BOD concentration (mg/L) C_{e} = effluent BOD concentration (mg/L) K_{T} = rate constant = 1.1 d⁻¹ at 20°C y = design depth (m)

n = porosity of media

A satisfactory performance of constructed wetland is possible with the help of basic design guidelines!

Design Guidelines

Sr.		Typical values	Typical values		
No	Parameters	European	Recommended		
		literature	for India		
1	Area required, m²/person	2.0 – 5.0	1.0 – 2.0		
2	BOD ₅ loading rate, g/m ² -day	7.5 – 12.0	17.5 – 35.0		
3	Detention time, days	2-7	2 – 3		
4	Hydraulic loading rate, mm/day	< Hydraulic	-		
		conductivity of			
		bed			
5	Depth of bed, m	-	0.6 - 0.9		
6	Porosity of bed, % (typical)	-	30 – 40		
7	1 st order reaction constant, K _T /	-	0.17 – 0.18		
	day				
8	Evapotranspiration losses,	10 - 15	>15		
	mm/day				

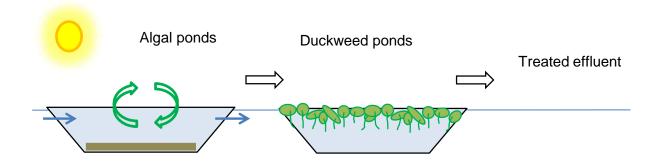
Species Used

Name of species	Properties	Reference
Phragmites australis	 Increased residence time leads to sedimentation of suspended particles Plants provide a physical site for bioremediation Suspended solids, nutrients, heavy metals, bacteria efficiently removed 	Reenu et al., 2015
T. latifolia	 Intensive gas transfer through convection make it suitable for CW Found in all water bodies including brackish, freshwater, flowing and stagnant Found in a variety of climates 	Rana and Maiti, 2018
C. esculenta	Metal uptake ability makes it common choice for bioremediation	Rana and Maiti, 2018

Phragmites australis

Typha latifolia

Colocasia Esculenta


Phragmites Karka

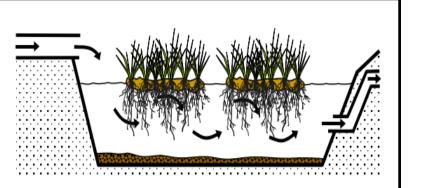
Duckweed Ponds

Features of duckweed plants are as follows:

- Freshwater plants growing at a rate 30% faster than water hyacinth
- Surface area of biomass doubles in 2-4 days
- More cold tolerant than water hyacinth; Indian climate suitable for duckweeds
- More responsive to wide range of pH ranging from 5-9
- Ability to control mosquito breeding and bad odor problems
- Better nutrient accumulation and easy harvesting
- Harvested duckweed protein-rich; used as fish or poultry feed provided treated wastewater does not contain heavy metals
- Potential for community based job creation and revenue generation when coupled with fish ponds

Duckweed Species

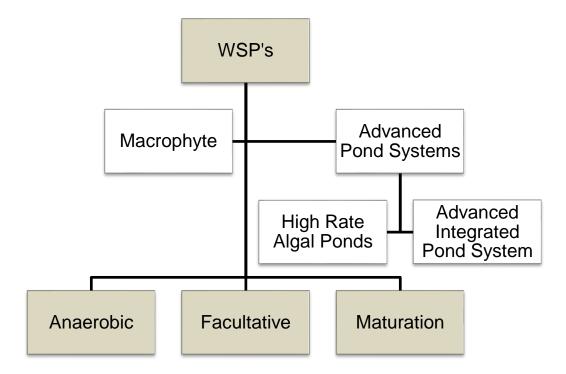
Scientific name	Common name	Uses	
Lemna minor		Important food source for fish and birds, hence grown in dams	
	Common duckweed	Valuable indicator of nutrient levels	
		Fish enthusiasts grow it as live food for native and goldfish	
Spirodela	Giant/ big	High protein food source (ducks, geese, certain fish)	
	duckweed	Harvested as feed for cattle and pigs in Asia and Africa	
Wolffia	Common water	Variety of duck and geese including mallard can consume it	
	meal	The dense canopy controls mosquito larvae	



Lemna minor

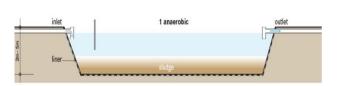
Spirodela

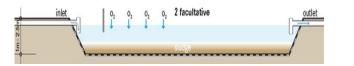
Floating Wetlands

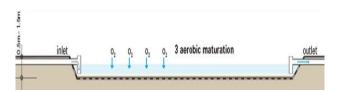

Combination of two NTS i.e., aquatic ponds (hydraulic aspects) along with constructed wetlands (rooted plants)

- In-situ treatment option for the revival of water bodies
- Hydroponically grown emergent wetland species
- Roots provide large surface area for biofilm
- Aquatic macrophytes 'bio-indicators' of pollution

An artificial island of 200m² area (100 units of 2m² area each) was constructed in-situ on river Kshipra and tested for domestic wastewater


Waste Stabilization Ponds




- Individual pond functions like a completely mix series reactor
- Series of ponds function as a series of completely mix reactors, thereby achieving the benefits of a plug flow reactor
- Capable of achieving 4-log removal of pathogens as against the 2-log removal for activated sludge process

Waste Stabilization Ponds

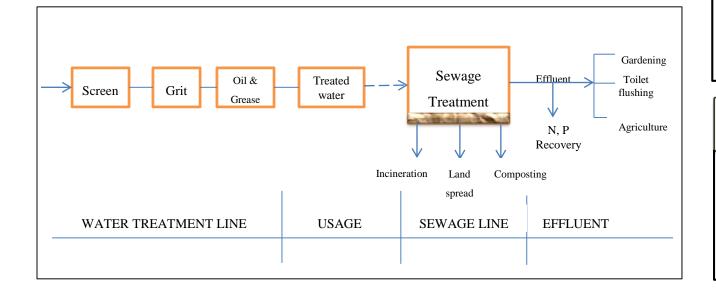
Classification:

- 1. Anaerobic ponds
 - Responsible for the primary treatment of wastewater
 - Reduce the area requirement of further ponds
 - Rate of sludge accumulation is higher in the beginning
- 2. Facultative ponds
 - Classified on the basis of their position in treatment chain
 - Micro-algae constituting the wastewater impart a green color
 - Pink/ red overloading; purple colored anaerobic sulphide oxidizing photosynthetic bacteria
 - Sulphide and ammonia toxicity inhibit algal growth
- 3. Maturation ponds
 - Receive pre-treated wastewater from facultative pond or any STP
 - Aerobic throughout the depth
 - 5 to 7 days detention time refines the quality of final effluent
 - Natural bacterial die-off; presence of predators (like fish or crustaceans)

Advantages of NTS

Economical

- Minimizes energy requirement
- Less expensive than the competitive mechanized treatment technologies
- Plants or flowers harvested might fetch revenue



Social

- Improve the aesthetics of the surroundings
- Recreation place where kids play and people can socialize
- Employment opportunities in rural and peri-urban areas

Recovery Aspects of NTS

- Significant resources getting lost to the environment
- Resource recovery from energy and nutrient streams can close the nutrient loops
- Wastewater and sludge resource carriers
- Wastewater treatment facilities actually factories
 manufacturing resources in solid/ liquid/ gaseous forms

Water	
vvalor	

Reuse for irrigation Aquaculture/ fish farming

Materials

- Fertilisers
- Soil- conditioners
- Animal feeds
- Bio plastics

- Biofuels
- Biogas
- Methanol
- Ethanol
- Bio hydrogen

Thank You!

kalbar@iitb.ac.in

Questions!

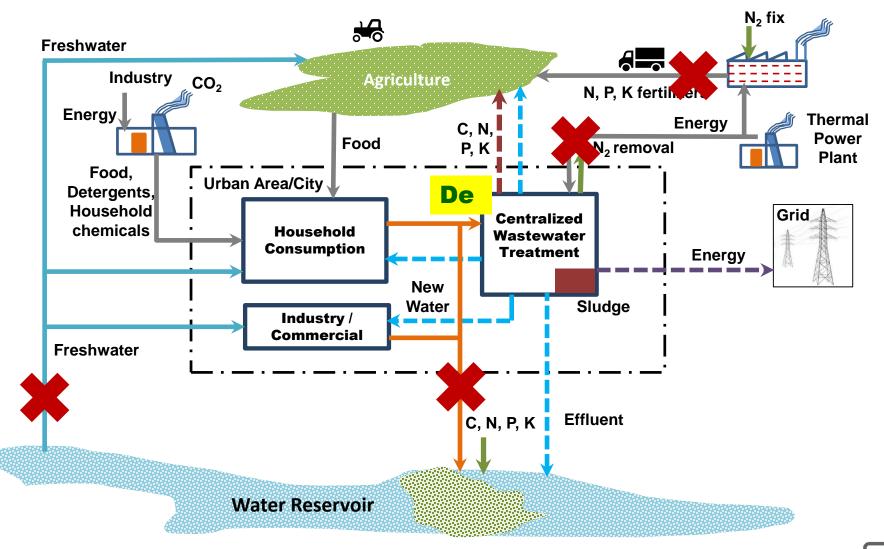
FIT FOR PURPOSE TECHNOLOGIES FOR RECYCLE & REUSE OF WASTEWATER

Nature-Based or Mechanized Wastewater Treatment Technologies: Selection for 'Fit for Purpose' Application

Dr. Pradip Kalbar

Associate Professor Centre for Urban Science and Engineering (CUSE) Indian Institute of Technology Bombay Email: <u>kalbar@iitb.ac.in</u> Tel. No. 022 2576 9330

11th Jan 2023


Centre for Urban Science and Engineering Improving Quality of Urban Life

Indian Institute of Technology Bombay

Current Planning Approaches

What's wrong in current approach?

Current Planning Approach

The market for recycled water is ABSENT!

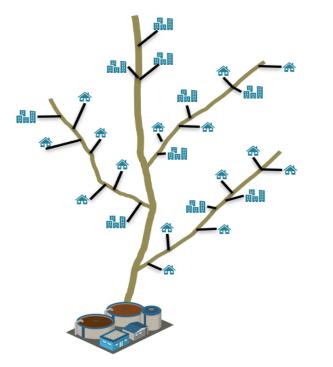
• It is unknown who will consume the treated sewage unless there is a market for it!

Pricing issues

- Cost of recycled water is around Rs. 10 12 per m³
- Freshwater tariff is meager Rs 3 to 6 per m³ (with significant variations at a regional level)

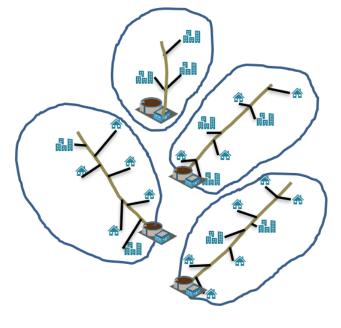
Billing policies

- Although the MCGM has a telescoping billing policy, many connections in island city are unmetered or most of the meters are dysfunctional
- Lack of appropriate guidelines for all stakeholders and bye-laws


Why recycling is not possible in the current context?

- Planners do not account land needed for wastewater treatment
- Infrastructure is planned with short-term benefits ex. Less capital cost
- Freshwater pricing is low to motivate people to adopt wastewater recycling

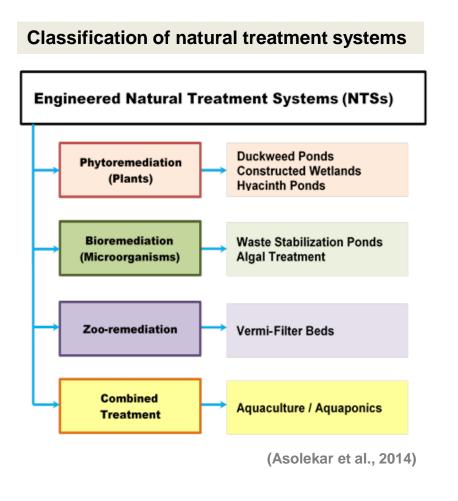
The Location!


The problem:

- The planned recycling stations are highly centralized, at the fag end - which are currently planned around 400-500 MLD
- It will need a large secondary distribution network in mostly concreted roads already cramped with dozens of other utilities

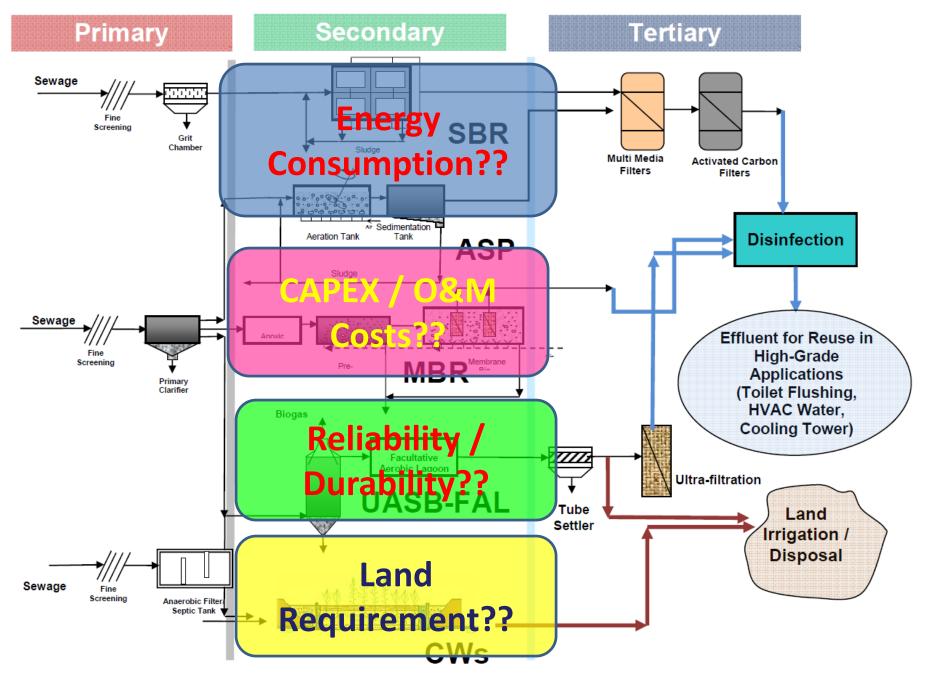
The solution:

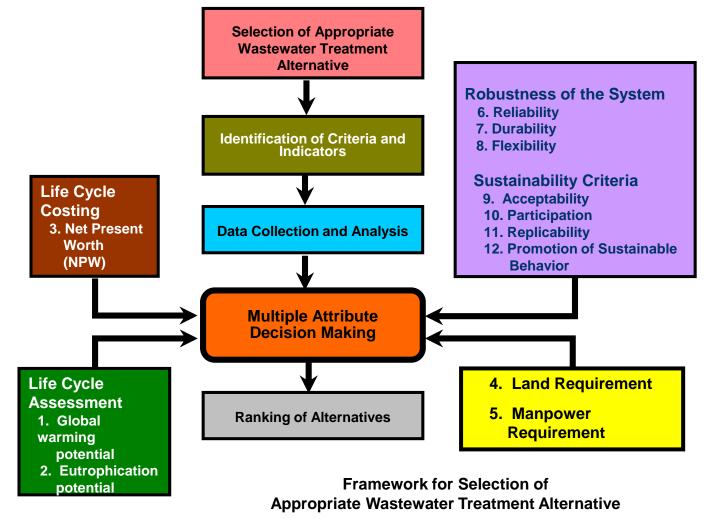
- Instead, decentralized recycling stations (about 50 MLD) may be more feasible in Mumbai's case, as these will create an opportunity for establishing a localized recycling network – about 40 satellite pumping stations
- Buildings can then have a second water connection from such localized recycled water networks.
- Modification in storage and internal distribution system in consumer premises



Technology Selection


Challenges in Creating Sewage Infrastructure


- Gap exists between sewage generation and wastewater treatment (WWT): only around 44% of the wastewater generated is treated (ENVIS, 2021)
- Mechanized Treatment Systems (MTSs) have significant energy consumption resulting in high O&M costs.
- Natural Treatment Systems (NTSs) have potential of becoming sustainable infrastructure, but not scaled up.


ENVIS (2021) Centre on Hygiene, Sanitation, Sewage Treatment Systems and Technology http://www.sulabhenvis.nic.in/database/stst_wastewater_2090.aspx. Accessed 15th July 2021

Asolekar SR, Kalbar PP, Chaturvedi MKM, Maillacheruvu KY (2014) Rejuvenation of Rivers and Lakes in India: Balancing Societal Priorities with Technological Possibilities. In: Comprehensive Water Quality and Purification. Elsevier, pp 181–229


Life Cycle Sustainability Assessment (LCSA).....

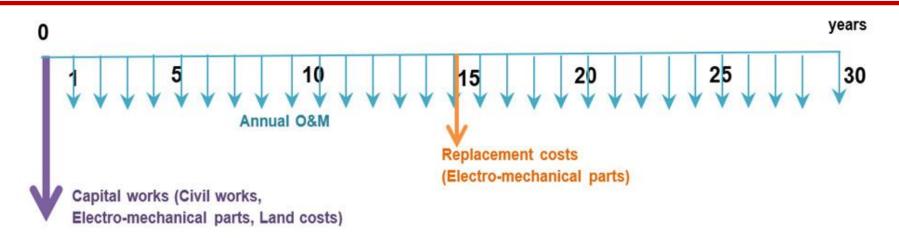
Concept of Hybrid Treatment Systems and Scenario-Based Decision-Making



O&M Costs and Land Requirement Comparison

Hybrid Treatment Systems (HTS)

HTSs is an appropriate combination of MTS and NTS to achieve **best** performance at reduced overall cost.



Constructed Wetlands

· Se

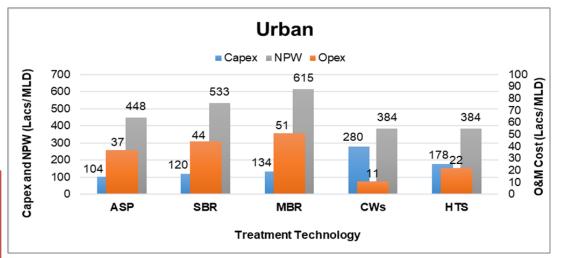
Life Cycle Costing (LCC)

Cash flow diagram of WWTPs considered for LCC

Cost components

- 1. Capital costs (Civil works electro-mechanical works, Land requirement)
- 2. Annual O&M costs (labour, energy, chemicals, maintenance)
- 3. Replacement costs

Present worth method


$$P = \frac{F}{(i+i)^n} = F(P/F, i, n)$$

$$P = \frac{A(1+i)^n - 1}{i(1+i)^n} = A(P/A, i, n)$$

Cost Effective Treatment Systems in Different Scenarios

Land cost used = INR 1.6 cr/ acre

Cost Comparision for BOD removal up to 10 mg/L		Capital Costs Rs.	Annual O&M Costs Rs.	Net Present Worth (30 yrs) Rs.
		Lacs/MLD	Lacs/MLD	Lacs/MLD
	ASP	104	37	448
Urban	SBR	120	44	533
	MBR	134	51	615
	CWs	280	11	384
	HTS	178	22	384
F.	ASP	91	- 37	435
	SBR	109	44	522
Peri- urban	MBR	126	51	607
urban	CWs	200	11	304
	HTS	136	22	342
	ASP	84	37	428
Rural	SBR	104	44	517
	MBR	122	51	603
	CWs	160	11	264
	HTS	115	22	321

In the economic evaluation of the treatment technologies, O&M costs play a significant role and not the capital costs.

This analysis shows that in any setting it is wise to invest in land and adopt natural treatment systems rather than paying huge monthly energy bills--- which will help achieve both sustainability and resilience!

Scenario Based Decision Making

	Scen	ario I	Scen	ario II	Scen	ario III	Scena	ario IV	Scenario V		Scenario VI	
Indicators	Urban Area / Land Constraint / Disposal to Surface Water Body		Urban Area / Land Constraint / Treated Water for Reuse		Sub-urban Area / No Land Constraint / Disposal to Surface Water Body		Sub-urban Area / No Land Constraint / Treated Water for Reuse		Rural Area / No Land Constraint / Disposal to Surface Water Body		Rural Area / No Land Constraint / Treated Water for Reuse	
	Weig ht ^a	Type of criteri a	Weig ht ^a	Type of criteri a	Weig ht ^a	Type of criteri a	Weig ht ^a	Type of criteri a	Weig ht ^a	Type of criteri a	Weig ht ^a	Type of criteri a
Global warming potential (kg)	20	cost	20	cost	20	cost	20	cost	20	cost	20	cost
Eutrophication potential (kg)	20	cost	80	cost	30	cost	80	cost	30	cost	80	cost
Net Present Worth (Rs. Lakh)	20	cost	20	cost	60	cost	60	cost	90	cost	90	cost
Land requirement (m ²)	80	cost	80	cost	40	benefit	40	benefit	80	benefit	80	benefit
Number	10	cost	10	cost	40	benefit	40	benefit	80	benefit	80	benefit
Reliability	40	benefit	40	benefit	40	benefit	40	benefit	40	benefit	40	benefit
Durability	40	benefit	40	benefit	40	benefit	40	benefit	40	benefit	40	benefit
Flexibility/Adaptability	40	benefit	40	benefit	40	benefit	40	benefit	40	benefit	40	benefit
Acceptability/Simplicity	10	benefit	10	benefit	30	benefit	30	benefit	80	benefit	80	benefit
Participation/Responsibility	10	benefit	10	benefit	30	benefit	30	benefit	80	benefit	80	benefit
Replicability	20	benefit	20	benefit	40	benefit	40	benefit	80	benefit	80	benefit
Promotion of Sustainable behavior	10	benefit	10	benefit	40	benefit	40	benefit	80	benefit	80	benefit

Relative distance metric for each scenario and rank of each alternative in particular scenario

	No Sce	enario	Scena	ario I	Scena	ario II	Scena	ario III	Scena	rio IV	Scena	rio V	Scena	rio VI
A L T	L		Urban Area / Land Constraint / Disposal to Surface Water Body		Urban Area / Land Constraint / Treated Water for Reuse		Sub-urban Area / No Land Constraint / Disposal to Surface Water Body		Sub-urban Area / No Land Constraint / Treated Water for Reuse		Rural Area / No Land Constraint / Disposal to Surface Water Body		Rural Area / No Land Constraint / Treated Water for Reuse	
	Score	Rank	Score	Rank	Score	Rank	Score	Rank	Score	Rank	Score	Rank	Score	Rank
A S P	0.5066	4	0.7857	1	0.7081	2	0.4277	3	0.4355	3	0.3244	3	0.3359	4
S B R	0.5087	2	0.7789	2	0.8017	1	0.3715	4	0.4910	2	0.2686	4	0.3445	3
U A S B - F A L	0.5083	3	0.7404	3	0.5816	3	0.4452	2	0.3754	4	0.4228	2	0.3982	2
C W s	0.5271	1	0.2127	4	0.2822	4	0.5506	1	0.5501	1	0.6262	1	0.6214	1

Fit for Purpose Applications

Correct Planning Approach

Criteria:

- Land availability?
 - Mechanized treatment comes with lower footprint at an energy cost
 - Natural treatment comes at a lower energy but at the cost of land
- Resource availability
 - Whether electricity is available 24x7 or not?
 - What is the level of skilled labour available for employment?
- Physical touch with treated effluent during recycling?
 - Irrigation and landscaping involves human touch with sewage hence has potential health risk associated with it
- Need for nutrient removal?
 - Stringent if disposal in water bodies
 - Lenient for agriculture or gardening or landscaping

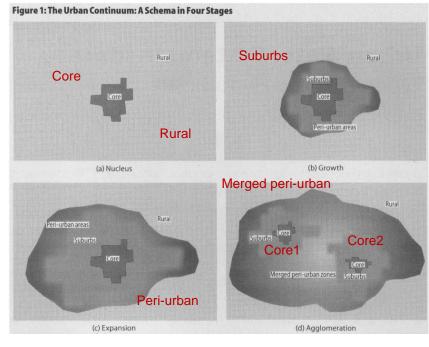
Eutrophication

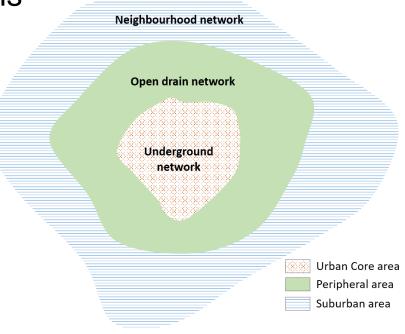
Powai lake

Eutrophic stretch of river Yamuna

Plan for timely removal of nutrients to prevent eutrophication in water bodies!

Eutrophic stretch of Upper Ganga Canal


The Upper Ganga Canal



HTS Approach		Treatment System used For BOD removal up to 30 mg/L	Treatment System used For BOD removal up to 10 mg/L	Treatment System used For BOD removal up to 5 mg/L	Usefulness in Different Settings
		MTS	MTS + Shallow Bed CWs	MTS + Shallow Bed CWs	This approach is more suitable for rural and peri- urban setting both in
HTS -1	Land requirement (m ²) per MLD	1100	3166	4469	centralized and decentralized manner where sufficient land is available. This approach
	O&M costs (INR/m ³)	б	7	7	can be used in cities as well where STPs are located at the outskirts of the city.
		MTS	MTS + Deep Bed CWs	MTS + Deep Bed CWs	This approach is more suitable in peri-urban and
HTS -2	Land requirement (m ²) per MLD	1100	2029	2616	urban setting both in centralized and decentralized manner where there is a land
	O&M costs (INR/m ³)	6	7	7	constraint.

Context of Decision-Making

- In the city core or the dense urban areas, mechanized treatment systems such as MBR, SBR, ASP
- Peri-urban areas R-MBR/ ASP or NTS if land permits
- Rural areas with less dense population decentralized or on-site treatment systems

Sood et al., (2021, October) Economic assessment of centralized and decentralized sewerage network systems. 15th International Conference on Urban Drainage, Melbourne.

Shah and Kulkarni, 2015

Thank You!

kalbar@iitb.ac.in

Questions!

Wastewater Technology Selection Parameters for Recycle and Reuse of Wastewater

Dr. Ajit Salvi, Dy.Ch.Engineer, BMC

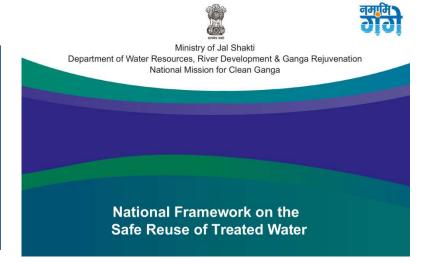
Challenges in Wastewater Sector

Biggest problem in India??

All want visible development like roads, Metro, hospitals etc

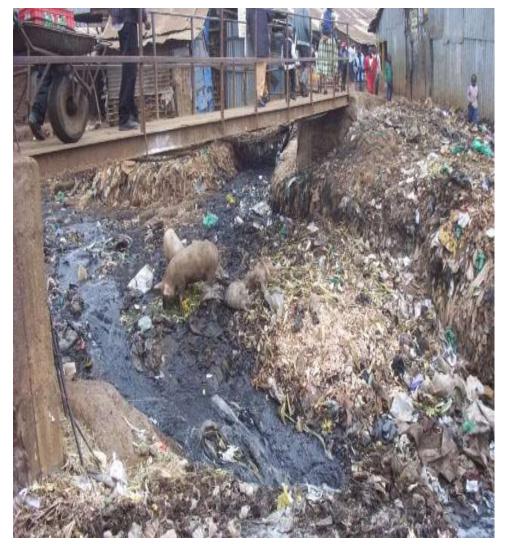
- Wastewater receives low priority...
- From citizens, politicians, urban local bodies

Because <u>Sewerage Infrastructure</u> does not qualify as visible development!


• People are less willing to pay for Sewage management.

Revenue generation by urban local bodies for sewerage infrastructure is a challenge.

Need for Wastewater Recycling

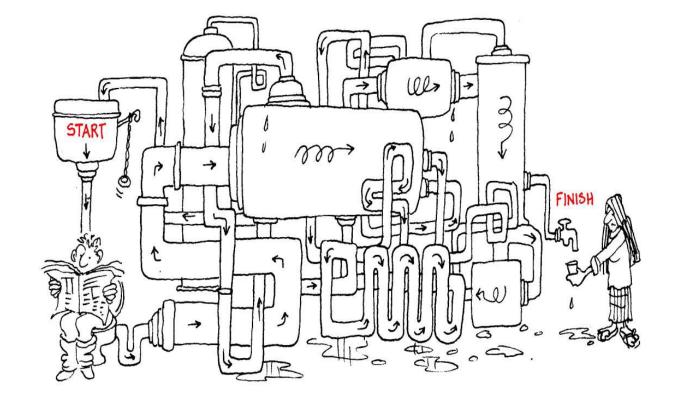

- Amidst freshwater scarcity, *sewage* is seen as a *resource* and STP's are factories manufacturing water and nutrients!
- Policies mandating wastewater recycling
- High-rise buildings and industries need to treat their own sewage and effluents

National Framework on the Safe Reuse of Treated Water encourages urban local bodies to plan for wastewater reuse and recycling....hence wastewater recycling is **THE WAY AHEAD!**

Waste Water, Environment, Health

- Contamination of Water
- Dirty Surrounding
- Breeding of Flies, Mosquitoes, Vectors etc.

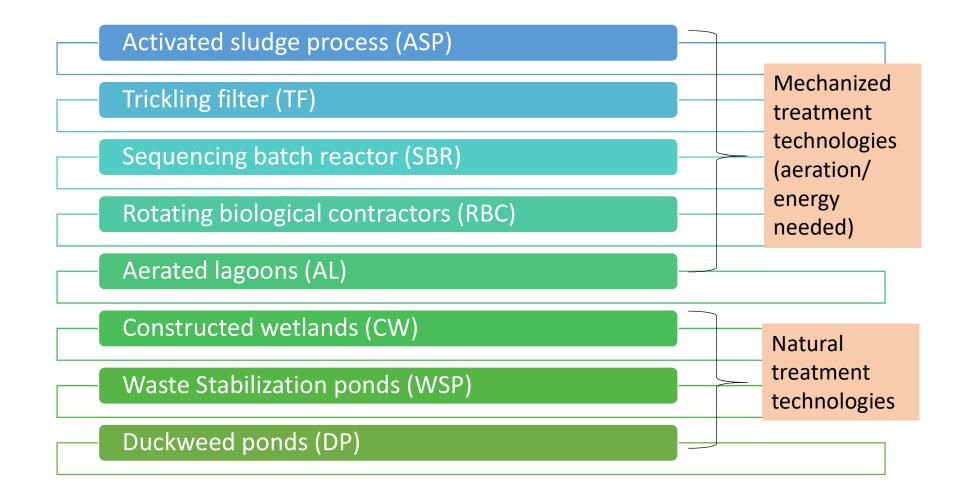
Thought Process of Public


Urban Areas are new users of water 'Take, flush and forget'

A paradigm that must change, urgently

Cannot flush – and forget

Have to find new approaches : Affordable and Sustainable



REVOLUTION – CHANGE IN MINDSET

Ways to address: Paradigm shift

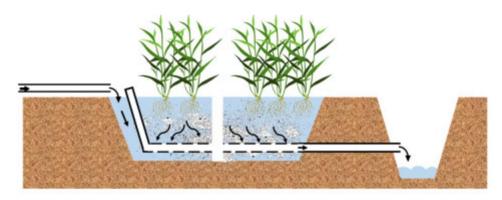
- From sewage treatment to Sewage Reuse and Recycling
- From Waste Management to Resource Recovery
- Emphasize that Waste Water is a Resource (in terms of Water, Nutrients for agricultural use and Energy) whose effective management is essential for Future Water Security.
- **Decentralised** Waste Water Treatment Option
- From Linear Economy to Cicular Economy

Plethora of Technologies

Mechanized treatment technologies

Activated sludge process

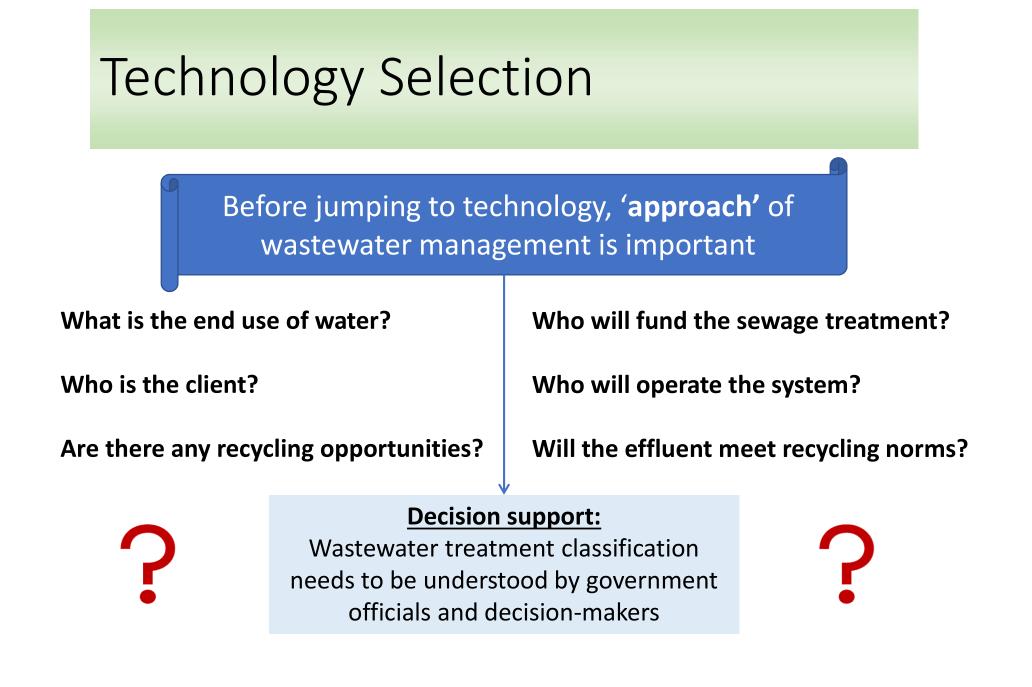
Membrane bioreactors



Extended aeration

Trickling filters

Nature-based technologies


Constructed wetlands/ reed beds/ root zone technology

Duckweed ponds

Advanced Integrated Wastewater Pond System (Series of ponds)

1] Facultative Aerobic Ponds
2] High Rate Algal Ponds (Raceaway)
3] Algal Settling Ponds
4] Maturation Ponds

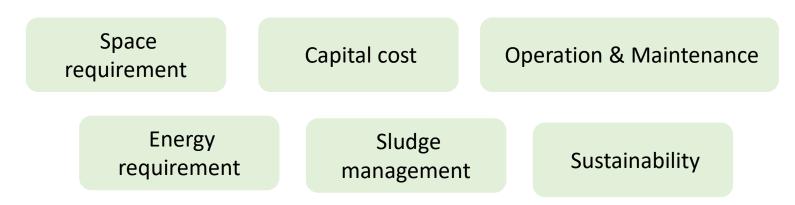
Water Reuse

- Agricultural Irrigation
- Landscape Irrigation
- Industrial Activities
- Ground Water aquifer recharge
- •Other Non-potable urban use Fire protection, Air Conditioning, Car Washing, Flushing, Construction.
- Potable use Blending in water supply storage reservoir

Parameters of Concern for Reuse

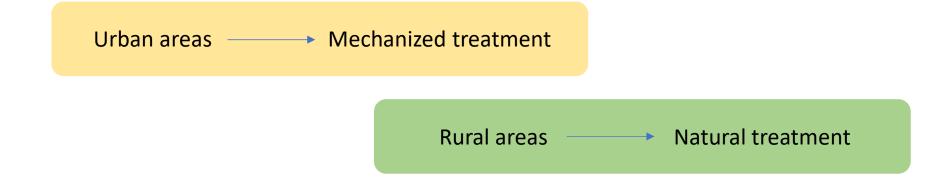
Sr. No.	Reuse Applications	Parameters of Concern
1	Agricultural Irrigation	Fecal coliform
2	Reservoir Recharge	Nitrogen, Phosphorous, Drinking water standards
3	Groundwater Recharge	Nitrogen, Drinking water standards
4	Domestic non- potable	Turbidity, Fecal coliform, Total Residual chlorides

Performance Efficiencies of Wastewater Treatment Technologies

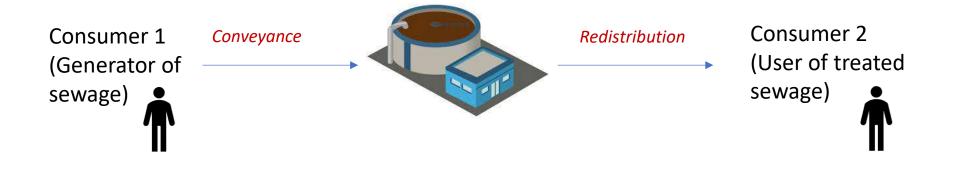

S. No	Technology	Source/Reference	Remov	val (%)			
			BOD	COD	TSS	TN	FC
Second	ary treatment technologies						
1	ASP	(Tare and Bose 2009: CPCB 2013)	78.37	84.09	87.76	10.00	90.02
2	MBBR		66.86	56.57	71.43	10.00	99.12
3	SBR		95.50	90.00	95.67	75.00	99.99
4	WSP		35.14	46.43	30.00	34.43	99.99
5	DPS		66.86	56.57	71.43	37.80	30.00
6	A20	(CPHEEO 2013)	98.83	91.06	98.92	76.91	99.87
7	UASB + EA	(CPCB <u>2013</u> ; Vashi et al. <u>2019</u>)	82.19	90.00	85.15	10.00	90.00
8	MBR	(Tare and Bose 2009: Ajmi et al. 2018)	97.60	96.50	95.00	60.00	99.99
9	Anaerobic lagoon + SP	(CPCB 2013)	70.00	51.33	70.00	10.00	90.00
10	SAFF	(Tare and Bose 2009)	96.67	87.50	76.40	10.00	99.99
11	BIOFOR-F		97.00	95.40	92.00	70.00	99.99
12	FAB		47.95	74.4	88.79	10.00	90.00
13	BIOFOR	(Tare and Bose 2009: Sharma and Singh 2013)	95.20	93.40	90.00	70.00	99.99
14	Oxidation Pond	(CPCB 2013)	66.89	51.25	71.08	10.00	99.39
15	C.Tech		96.00	97.64	81.60	80.00	99.99
16	Trickling Filter		71.43	64.66	88.31	10.00	90.00
17	Constructed Wetlands (CW)	(Ramachandra et al. 2017; Thalla et al. 2019)	77.00	60.00	90.00	67.00	78.21
18	SBT	(Stefan et al. <u>2017</u>)	80.99	83.13	71.92	70.00	99.99
Emergi	ng technologies						
19	Modified Ludzack Ettinger (MLE)	(CPHEEO 2013)	0	0	0	75.5	90.00
20	Wuhrmann Process (WP)		0	0	0	81.25	90.00
21	Step-Feed BNR		0	0	0	62.50	90.00
22	Bardenpho Process		97.30	0	99.40	88.90	90.00
Tertiary	treatment technologies						
23	Coagulation + Flocculation + Rapid Sand Filters (RSF)	(Hamoda et al. 2004; Üstün et al. 2011)	65.00	53.34	52.14	30.00	80.00
24	Ultrafiltration (UF) + Reverse Osmosis (RO)	(Pizzichini and Russo 2001)	72.79	60.97	85.00	94.00	99.99
25	Micro Filtration (MF) + Reverse Osmosis (RO)		41.27	24.19	85.06	92.24	99.99

Quality Criteria for Various Reuse Applications

S.No	Desired reuse	Source	рН	Turbidity (NTU)	COD (mg/l)	BOD (mg/l)	TDS (mg/l)	TSS (mg/l)	TN (mg/l)	FC (MPN/l)
1	Toilet flushing	(Asano et al. <u>1996;</u> Lazarova et al. <u>2003</u> ; Lyu et al. <u>2016</u>)	6–9	5		10	1500	10	10	200
2	Construction purposes	(Asano et al. <u>1996</u> ; Adewumi and Oguntuase <u>2016</u> ; Chen et al. <u>2017</u>)	6–9	20	=	15	1500	10	20	200
3	Road cleaning	(Shuval <u>1977;</u> Lyu et al. <u>2016</u> ; Chen et al. <u>2017</u>)	6-9	10	-	15	1500	10	10	200
4	Landscape	(Coe and Laverty <u>1972</u> ; DeCook <u>1977</u> ; Smith et al. <u>1979</u> ; Adewumi and Oguntuase <u>2016</u>)	6–9	5	-	20	1000	10	20	2000
5	Industrial cooling	(DeCook <u>1977;</u> Asano et al. <u>1996;</u> Lyu et al. <u>2016;</u> Chen et al. <u>2017</u>)	6.5- 8.5	5	30	10	1000	10	10	2000
6	Irrigation	(Asano et al. <u>1996</u> ; Adewumi and Oguntuase <u>2016</u> ; Chen et al. <u>2017</u>)	5.5- 8.5	-	100	40	1000	10	-	20,000
7	Vehicle washing	(Zaneti et al. <u>2012;</u> Pei et al. <u>2013</u> ; Lyu et al. <u>2016</u> ; Chen et al. <u>2017</u>)	6–9	5	-	10	1000	20	10	2000
8	Environmental flow									
a	Inland surface water	(CPHEEO <u>2013</u>)	6.5-9	-	250	30	-	100	100	10,000
b	Surface waters used as a source of drinking water		6.5- 8.5		-	10	-	10	10	2300
9	Fire protection	(Shuval <u>1977;</u> Okun <u>2002;</u> Lyu et al. <u>2016</u>)	6-9	10	-	15	1500	10	10	200
10	Laundry washing	(Japan Sewage Works <u>1993</u> ; Tamanna et al. <u>2011</u> ; Adewumi and Oguntuase <u>2016</u>)	6-9	2		10	2000	10	-	250
11	Dust control	(California Guidelines <u>1994</u> ; Lyu et al. <u>2016</u>)	6–9	20		15	1500	10	20	200
12	Snow making	(California Guidelines 1994; Asano et al. 1996)	6-9	10	_	15	1500	10	10	22
13	Outdoor bathing	(BIS <u>1992</u>)	6.5- 8.5	-		3	-	10	10	5000
14	Groundwater recharge	(Smith et al. <u>1979</u> ; Idelovitch et al. <u>1980</u> ; Adewumi and Oguntuase <u>2016</u>)	6.5- 8.5	2	10	5	50		1	1


Technology Selection Criteria

- Numerous criteria listed in literature for selecting a particular technology
- Criteria changes with respect to location and context of decision-making
- Not practically possible to account for all but few important criteria for consideration are:


Space requirement

- Mechanized and natural treatment systems mainly differ in space requirement
- Mechanized treatment less footprint hence most favourable option in urban areas or in places where land constraints (Ex. ASP, SBR, MBR)
- Natural treatment more footprint so generally avoided due to increased land costs (Ex. CW, WSP)

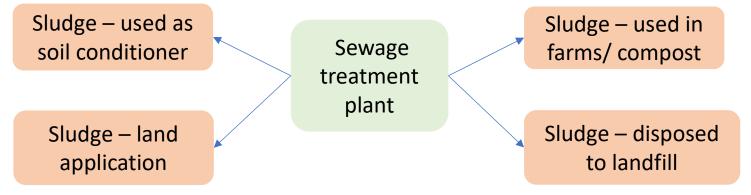
Capital cost

- Capital cost includes land cost, construction cost, material purchase cost, electro-mechanical equipment, consultancy fees (STP design), contractor's profit etc.
- Capital cost often becomes the governing criteria for decision-making
- In the case of wastewater recycling and reuse, *'redistribution network'* for conveying treated effluent to the point-of-reuse will also need to be accounted

Operation and Maintenance

- O&M cost includes
 - Cost of spares, consumables, material
 - Manpower (skilled or unskilled technicians, lab staff, technical assistants for sampling etc.)
 - Chemicals needed for routine Operation
- O&M cost component is often excluded in planning and decision-making. However, if treated wastewater is to be recycled, then *maintaining effluent quality is of utmost importance*
- O&M on a regular basis will ensure sustenance of the STP hence <u>O&M cannot be neglected</u> while recycling wastewater

Energy requirement


- Mechanized treatment technologies such as ASP, SBR, MBR etc. are energy consuming
- 50-60% operational costs are associated with energy mainly for aeration and pumping
- Nature-based systems such as CWs, WSPs do not have aeration hence reduce energy requirement

- For wastewater recycling, if mechanized treatment is used, the revenue from recycled water should be ensured to keep the STP running in the future
- Availability of electricity should be ensured while opting for mechanized treatment systems
- CWs and WSPs or duckweed ponds are low-energy consuming technologies which should be prioritized for recycling

Sludge management

- Biological treatment such as activated sludge process involves secondary settling tanks hence sludge management (or biosolids handling) becomes significant
- Desludging on a regular basis is important
- Class A & Class B sludge
- Providing a market for sludge for ex. Reuse in agriculture or use as compost/ soil conditioner should be explored

Sustainability

Pillars of sustainability:

Social

Social dimension:

- Technologies should be accepted by the local community
- Local people should have opportunities to operate and manage the STPs
- There should not be any nuisance of odour or noise

Economic

Environmental

Economic dimension:

- Wastewater treatment technologies should be financially viable – water pricing should be planned accordingly
- Willingness surveys of clients to pay for treated wastewater

Environmental dimension:

- Technologies should remove nutrients and pathogens to meet recycling norms
- Effluent disposed in rivers should not cause eutrophication

Techno Commercial Evaluation

A. Non Cost Factors.

- 1. Constructability –
- Ease of construction
- Depth of excavation / Total height of structure
- Number of units required

2. Operation & Maintenance -

- Sludge Quantity
- Skill Requirement / Ease of O & M
- Past Experience

3. Reliability of Plant Performance

- Past Experience in terms of size of operating
 Plant
- Reliability of performance

4. Environmental

- Odour & Noise pollution
- Explosion hazard
- Health & Safety

B. Cost Factors

- 1. Capital Cost
- 2. Operation & Maintenance Cost
- 3. Cost Recovery
- 4. Life Cycle Cost

Technology Comparison- Monetary terms for Core Technology-0.5 MLD

Sr. No.	Parameters	Tiger Bio Filter	Phytorid	Soil Imbolized Bio Filter	Soil Bio Technolog Y	Stabilizati on pond	Activated Sludge Process	Moving Bed Bio Reactor	Membran e Bio Reactor	Extended Aeration	arterosie	Sequentia l Batch Reactor
(I)	Capital Cost											
	Land Cost (Rs. Lac / Ha)						12.50					
	Area requirement (Hactare)	0.05	0.08	0.18	0.13	0.60	0.03	0.05	0.03	0.06	0.04	0.05
2	Land Cost (Rs. Lac)	0.63	1.00	2.25	1.63	7.50	0.38	0.63	0.31	0.69	0.47	0.56
	Unit capital cost (Secondary treatment)	53.69	58.16	86.00	58.91	46.43	85.00	122.54	143.18	127.68	134.13	118.79
	Unit capital cost (Tertiary treatment)	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00
	Total capital cost (Secondary+Tertiary)	68.69	73.16	101.00	73.91	61.43	100.00	137.54	158.18	142.68	149.13	133.79
	Total Land + Capital Cost (Rs.Lac)	69.32	74.16	103.25	75.54	68.93	100.38	138.16	158.49	143.36	149.59	134.35
	SUB TOTAL	69.32	74.16	103.25	75.54	68.93	100.38	138.16	158.49	143.36	149.59	134.35

Technology Comparison- Monetary terms

Sr. No.	Parameters	Tiger Bio Filter	Phytorid	Soil Imbolized Bio Filter	Soil Bio Technolog Y	Stabilizati on pond	Activated Sludge Process	Moving Bed Bio Reactor	Membran e Bio Reactor	Extended Aeration	Submerge d Aerobic Fixed Film Reactor	Sequencial Batch Reactor
(11)	Operating Costs											
a.	Gross Operating Costs											
1	Power cost (Rs./m3)	0.43	0.61	0.81	1.22	0.29	2.65	2.18	2.15	2.12	2.16	2.07
2	Chemical (Rs./m3)	0.20	1.00	0.70	0.70	0.10	0.10	0.20	0.20	0.20	0.20	0.20
3	Manpower (Rs./m3)	2.40	2.40	2.40	2.40	1.33	4.67	4.56	5.29	4.12	4.35	4.26
4	Residual Disposal (Rs./m3)	0.10	0.10	0.10	0.10	0.10	2.65	2.00	2.00	2.00	2.00	2.00
1000	Maintenance Cost of Plant (% of Capex)											
a.	E & M Works	3.00%	3.00%	3.00%	3.00%	3.00%	3.00%	3.00%	3.00%	3.00%	3.00%	3.00%
	Maintenance Cost of E & M Works (Rs./m3)	0.23	0.18	0.25	0.12	0.35	0.90	1.20	1.72	1.29	1.42	1.21
b.	Civil Works	1.50%	1.50%	1.50%	1.50%	1.50%	1.50%	1.50%	1.50%	1.50%	1.50%	1.50%
	Maintenance Cost of Civil Works (Rs./m3)	0.05	0.05	0.07	0.05	0.03	0.04	0.05	0.04	0.05	0.05	0.05
6	Total Operating Cost (Rs /m3)	3.41	4.35	4.34	4.59	2.21	11.01	10.19	11.40	9.78	10.18	9.79
7	Total Operating Cost per annum (Rs.Lac)	6.23	7.93	7.91	8.38	4.03	20.10	<mark>18.59</mark>	20.80	17.85	18.58	17.87

Technology Comparison- Non monetary terms

Sr. no	Description	Tiger Bio Filter	Phyt orid	SIBF	SBT	Stabiliz ation Pond	ASP	MBB R	MBR	EA	SAFFR	SBR
1	Preliminary units											
	Coarse Screening	٧	V	V	V	v	٧	V	٧	V	V	٧
	Fine Screening						٧	V	V	V	٧	٧
	Grit Separation	٧				V	٧		V			
	O&G removal					V	٧		V			
2	Secondary units											
	Aeration tank+ blowers					v	٧	V	V	V	V	٧
	Bio media Filtration tank	٧	V	V	V							
	Sedimentation tank/Sludge separation tank						v	v		V	V	
	Intermediate Storage tank with recirculation system			٧	۷							
1	Sludge Treatment/Management					v	v	v	v	V	٧	٧
	Pressure Sand Filter/ Activated Carbon Filter	٧	V	۷	۷							
	Disinfection	٧	V	V	V	V	٧	V	V	V	V	٧

Conclusion

- •A selective approach for multiple wastewater recovery is desirable & technologically feasible, to provide water at specific standards for each reuse objective.
- •"Fit-for-purpose" approach to water reuse could save water and would reduce production cost & energy demand by eliminating unnecessary treatment and long term conveyance, with typically aim at local reuse.
- The appropriate choice of technologies for such approaches is the most critical & hence need to be selected carefully.

Thank you for your kind attention!